Skip to main content
Log in

Pulse Respirometry in Two-Phase Partitioning Bioreactors: Case Study of Terephthalic Acid Biodegradation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two-phase partitioning bioreactors (TPPBs) are based on the addition of an organic phase, often called vector, to a bioreactor in order to increase mass transfer of oxygen or gaseous substrates from the gaseous phase to the aqueous phase. In TPPBs, like in any other reactor design, the characterization of the bioprocess is often required for design, control, and operation purposes. Pulse respirometry is a method that allows for microbial processes characterization through the determination of several stoichiometric and kinetic parameters with relatively little experimental effort. Despite its interest and its previous application in countless applications, pulse respirometry has never been applied in TPPBs. In this work, pulse respirometry was assessed in a model TPPB degrading terephthalic acid and using Elvax™ as solid vector to enhance oxygen transfer. The results indicated that the addition of 10 to 20 % Elvax increased oxygen transfer by up to 97 %, compared to control with no vector. Pulse respirometry was successfully applied and allowed for the determination of the growth yield, the substrate affinity constant, and the maximum growth rate, within other. It is concluded that pulse respirometry is a useful method, not only for the characterization of processes in TPPBs but also for the selection of a vector within several brands commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quijano, G., Revah, S., Gutierrez-Rojas, M., Flores-Cotera, L., & Thalasso, F. (2009). Process Biochemistry, 44, 619–624.

    Article  CAS  Google Scholar 

  2. Daugulis, A. J., Tomei, M. C., & Guieysse, B. (2011). Applications Microbiology Biotechnology, 90, 1589–1608.

    Article  CAS  Google Scholar 

  3. Daugulis, A. (2001). Trends in Biotechnology, 19, 457–462.

    Article  CAS  Google Scholar 

  4. Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. (2007). Biotechnology Advances, 25, 410–422.

    Article  Google Scholar 

  5. Littlejohns, J. V., & Daugulis, A. J. (2007). Chemistry Engineering Journal, 129, 67–74.

    Article  CAS  Google Scholar 

  6. Quijano, G., Hernandez, M., Villaverde, S., Thalasso, F., & Muñoz, R. (2010). Applications Microbiology Biotechnology, 85, 543–551.

    Article  CAS  Google Scholar 

  7. Buchs, J. (2001). Biochemistry Engineering Journal, 7, 91–98.

    Article  CAS  Google Scholar 

  8. Zilouei, H., Guieysse, B., & Mattiasson, B. (2008). Chemosphere, 72, 1788–1794.

    Article  CAS  Google Scholar 

  9. Oliveira, C. S., Ordaz, A., Alba, J., Alves, M., Ferreira, E. C., & Thalasso, F. (2009). Chemosphere Products Process Modelling, 4(2), 1–14.

    Google Scholar 

  10. Ordaz, A., Oliveira, C. S., Quijano, G., Ferreira, E. C., Alves, M., & Thalasso, F. (2012). Journal of Biotechnology, 57, 173–179.

    Article  Google Scholar 

  11. Ordaz, A., Oliveira, C.S., Aguilar, R., Carrión, M., Ferreira, E.C., Alves, M., Thalasso, F. (2008) 100, 94–102

  12. Spanjers, H., Takacs, I., & Brouwer, H. (1999). Water Science and Technology, 39(4), 137–145.

    Article  Google Scholar 

  13. Pophali, G. R., Khan, R., Dhodapkar, R. S., Nandy, T., & Devotta, S. (2007). Journal of Environmental Management, 85, 1024–1033.

    Article  CAS  Google Scholar 

  14. Vamsee-Krishna, C., & Prashant, S. P. (2008). Indian Journal Microbiology, 48, 19–34.

    Article  CAS  Google Scholar 

  15. APHA. (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Publishers Health Association.

    Google Scholar 

  16. Badino, A. C., Facciotti, M. C. R., & Schmidel, W. (2000). Journal Chemistry Technology Biotechnology, 75, 469–474.

    Article  CAS  Google Scholar 

  17. Gogate, P. R., Beenackers, A. A. C. M., & Pandit, A. B. (2000). Biochemistry Engineering Journal, 6, 109–144.

    Article  CAS  Google Scholar 

  18. Oliveira, C. S., Ordaz, A., Alves, M., Ferreira, E. C., & Thalasso, F. (2011). Biochemistry Engineering Journal, 58–59, 12–19.

    Article  Google Scholar 

  19. Choi, K. Y., Kim, D., Sul, W. J., Chae, J. C., Zylstra, G. J., Kim, Y. M., & Kim, E. (2005). FEMS Microbiology Letters, 252, 207–213.

    Article  CAS  Google Scholar 

  20. Quijano, G., Rocha-Rios, J., Hernandez, M., Villaverde, S., Revah, S., Muñoz, R., & Thalasso, F. (2010). Journal Hazard Materials, 175, 1085–1089.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by “Instituto de Ciencia y Tecnologia del Distrito Federal” (2008-PICS-056). We gratefully acknowledge the financial support to Alberto Ordaz Cortés through the postdoc grant from “Consejo Nacional de Ciencia y Tecnología” (290586_IPN). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ordaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordaz, A., Quijano, G., Thalasso, F. et al. Pulse Respirometry in Two-Phase Partitioning Bioreactors: Case Study of Terephthalic Acid Biodegradation. Appl Biochem Biotechnol 169, 810–820 (2013). https://doi.org/10.1007/s12010-012-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0020-2

Keywords

Navigation