Skip to main content
Log in

Covalent Immobilization of Cellulases onto a Water-Soluble–Insoluble Reversible Polymer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The covalent immobilization of a commercial preparation of cellulase on a reversibly soluble–insoluble enteric polymer Eudragit S-100 by carbodiimide coupling was carried out. The characteristics of covalent Eudragit cellulase were evaluated using Fourier transform infrared (FTIR) spectra, circular dichroism (CD) spectra, and fluorescence spectra. FTIR, CD, and fluorescence measurements also revealed that the cellulases were covalently bonded to the supports. Covalent Eudragit cellulase had binding efficiency of 81.08% which was higher than the noncovalent Eudragit cellulase 56.83%. The relative activity of the native cellulase and covalent Eudragit cellulase increased and reached the maximum (at pH 5.0, 50°C) and then decreased with further increases in pH and temperature. The covalent Eudragit cellulase shows higher stability especially at higher pH and temperature. The K m value of covalent Eudragit cellulase (4.78 g·L−1) was decreased compared to that of the native cellulase (2.89 g·L−1). The affinity of the cellulase to its substrate was increased when it was immobilized on Eudragit S-100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jang, H. D., & Chen, K. S. (2003). World Journal of Microbiology and Biotechnology, 19, 263–268.

    Article  CAS  Google Scholar 

  2. Filos, G., Tziala, T., Lagios, G., et al. (2006). Biochemistry and Biotechnology, 36, 111–125.

    CAS  Google Scholar 

  3. Cavaco-Paulo, A. (1998). Carbohydrate Polymers, 37, 273–277.

    Article  CAS  Google Scholar 

  4. Cao, Y., & Tan, H. (2002). Carbohydrate Research, 337, 1291–1296.

    Article  CAS  Google Scholar 

  5. Miettinen-Oinonen, A., Londesborough, J., Joutsjoki, V., et al. (2004). Enzyme and Microbial Technology, 34, 332–341.

    Article  CAS  Google Scholar 

  6. Kochavi, D., Videback, T., & Cedroni, D. (1990). American Dyestuff Reporter, 79, 24–28.

    CAS  Google Scholar 

  7. Kumar, A., & Harnden, A. (1999). Textile Chemist and Colorist & American Dyestuff Reporter, 1, 37–41.

    CAS  Google Scholar 

  8. Sardar, M., Roy, I., Munishwar, N. G., et al. (2000). Enzyme and Microbial Technology, 27, 672–679.

    Article  CAS  Google Scholar 

  9. Dourado, F., Bastos, M., Mota, M., et al. (2002). Journal of Biotechnology, 99, 121–131.

    Article  CAS  Google Scholar 

  10. Jin-Won, P., Kwinam, P., Hocheol, S., et al. (2002). Journal of Biotechnology, 93, 203–208.

    Article  Google Scholar 

  11. Rajesh, K. B., & Rekha, S. S. (2002). Carbohydrate Polymers, 47, 137–141.

    Article  Google Scholar 

  12. Fujii, M., & Taniguchi, M. (1991). Trends in Biotechnology, 9, 191–196.

    Article  CAS  Google Scholar 

  13. Rodrigues, A. R., Cabral, J. M. S., & Taipa, M. (2002). Enzyme and Microbial Technology, 31, 133–141.

    Article  CAS  Google Scholar 

  14. Arasaratnam, V. V., Galaev, I. Y., & Mattiasson, B. (2000). Enzyme and Microbial Technology, 27, 254–263.

    Article  CAS  Google Scholar 

  15. Shen, J. S., Rushforth, M., Cavaco-Paulo, A., et al. (2007). Enzyme and Microbial Technology, 40, 1656–1661.

    Article  CAS  Google Scholar 

  16. Smith, E., Schroeder, M., Guebitz, G., et al. (2010). Enzyme and Microbial Technology, 47, 105–111.

    Article  CAS  Google Scholar 

  17. Silva, C. J. S. M., Zhang, Q. H., Shen, J. S., et al. (2006). Enzyme and Microbial Technology, 39, 634–640.

    Article  CAS  Google Scholar 

  18. Silva, C. J. S. M., Gübitz, G., & Cavaco-Paulo, A. (2006). Journal of Chemical Technology and Biotechnology, 81, 8–16.

    Article  CAS  Google Scholar 

  19. Liu, P., Xia, W. S., & Liu, J. (2008). Biochemical Engineering Journal, 41, 142–148.

    Article  CAS  Google Scholar 

  20. Sharma, S., Kaur, P., Jain, A., et al. (2003). Biomacromolecules, 4, 330–336.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Kondo, A., Urabe, T., & Higashitani, K. (1994). Journal of Fermentation and Bioengineering, 77, 700–703.

    Article  CAS  Google Scholar 

  23. Sardar, M., Agarwal, R., Kumar, A., et al. (1997). Enzyme and Microbial Technology, 20, 361–367.

    Article  CAS  Google Scholar 

  24. Khoshnevisana, K., Bordbarb, A., Zare, D., et al. (2011). Chemical Engineering Journal, 171, 669–673.

    Article  Google Scholar 

  25. Zhou, J. Q., & Wang, J. W. (2009). Enzyme and Microbial Technology, 45, 299–304.

    Article  CAS  Google Scholar 

  26. Liao, H. D., Chen, D., Yuan, L., et al. (2010). Carbohydrate Polymers, 82, 600–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (51173071), the Fundamental Research Funds for the Central Universities(JUSRP111A01), Excellent Science and Technology Innovation Team in Colleges and Universities in Jiangsu Province, the Fundamental Research Funds for the Central Universities (JUSRP111A01),the Graduate student innovation plan of Jiangsu Province of China (CXZZ11_0473), and the Doctor Candidate Foundation of Jiangnan University of China (grant number JUDCF10037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Yuan, J., Wang, Q. et al. Covalent Immobilization of Cellulases onto a Water-Soluble–Insoluble Reversible Polymer. Appl Biochem Biotechnol 166, 1433–1441 (2012). https://doi.org/10.1007/s12010-011-9536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9536-0

Keywords

Navigation