Skip to main content
Log in

In Vitro Gastric and Intestinal Digestions of Pulsed Light-Treated Shrimp Extracts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pulsed ultraviolet light (PUV), a novel technology most commonly used for microbial inactivation, has recently been employed to effectively mitigate food allergens in peanuts, soybean, shrimp, and almond. Putative mechanisms for the efficacy of PUV in reducing allergen reactivity include photothermal, photochemical, and photophysical effects. To date, there are no published data highlighting the effects of in vitro simulated gastric and intestinal digestion on the stability of PUV reduced allergen reactivity of food. In this study, PUV-treated shrimp extracts were subjected to simulated gastric fluid containing pepsin and simulated intestinal fluid containing trypsin and chymotrypsin, and then tested for changes in allergen potency. SDS-PAGE showed no major band deviation between undigested and digested PUV-treated shrimp extracts. IgE binding to tropomyosin remained markedly decreased as seen in Western blot analysis. Total shrimp allergen reactivity remained unchanged following in vitro peptic digestion and was markedly reduced following in vitro intestinal digestion as illustrated in indirect ELISA. The PUV reduced shrimp allergens remained at a low level under the in vitro simulated digestive conditions. The results inferred that PUV could be a potential method to create less allergenic shrimp products that would remain at a low allergen level under human gastric and intestinal digestive conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jeong, K. Y., Hong, C. S., & Yong, T. S. (2006). Allergenic tropomyosins and their cross-reactivities. Protein and Peptide Letters, 13, 835–845.

    Article  CAS  Google Scholar 

  2. Shiomi, K., Sato, Y., Hamamoto, S., Mita, H., & Shimakura, K. (2008). Sarcoplasmic calcium-binding protein: Identification as a new allergen of the black tiger shrimp Penaeus monodon. International Archives of Allergy and Immunology, 146, 91–98.

    Article  CAS  Google Scholar 

  3. Ayuso, R., Grishina, G., Bardina, L., Carrillo, T., Blanco, C., Ibanez, M. D., Sampson, H. A., & Beyer, K. (2008). Myosin light chain is a novel shrimp allergen, Lit v 3. The Journal of Allergy and Clinical Immunology, 122, 795–802.

    Article  CAS  Google Scholar 

  4. Yu, C. J., Lin, Y. F., Chiang, B. L., & Chow, L. P. (2003). Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. Journal of Immunology, 170, 445–453.

    CAS  Google Scholar 

  5. Garcia-Orozco, K. D., Aispuro-Hernandez, E., Yepiz-Plascencia, G., Calderon-de-la-Barca, A. M., & Sotelo-Mundo, R. R. (2007). Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. International Archives of Allergy and Immunology, 144, 23–28.

    Article  CAS  Google Scholar 

  6. Reese, G., Ayuso, R., & Lehrer, S. B. (1999). Tropomyosin: An invertebrate pan-allergen. International Archives of Allergy and Immunology, 119, 247–258.

    Article  CAS  Google Scholar 

  7. Jeoung, B. J., Reese, G., Hauck, P., Oliver, J. B., Daul, C. B., & Lehrer, S. B. (1997). Quantification of the major brown shrimp allergen Pen a 1 (tropomyosin) by a monoclonal antibody-based sandwich ELISA. The Journal of Allergy and Clinical Immunology, 100, 229–234.

    Article  CAS  Google Scholar 

  8. Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D., & Rao, P. V. (1993). Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. Journal of Immunology, 151, 5354–5363.

    CAS  Google Scholar 

  9. Shriver, S. K., & Yang, W. (2011). Thermal and nonthermal methods for allergen control. Food Engineering Reviews, 3, 26–43.

    Article  CAS  Google Scholar 

  10. Krishnamurthy, K., Demirci, A., & Irudayaraj, J. M. (2007). Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. Journal of Food Science, 72, M233–M239.

    Article  CAS  Google Scholar 

  11. Smith, W. L., Lagunas-Solar, M. C., & Cullor, J. S. (2002). Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. Journal of Food Protection, 65, 1480–1482.

    Google Scholar 

  12. Krishnamurthy, K., Demirci, A., Krishnamurthy, K., Irudayaraj, J., & Yang, W. (2009). Chapter 11. UV pasteurization of food materials. In J. M. Irudayaraj & S. Jun (Eds.), Food processing operations modeling: Design and analysis (2nd ed., pp. 281–299). Boca Raton, FL: CRC Press. ISBN 978-1-4200-5553-5.

    Google Scholar 

  13. Chung, S. Y., Yang, W., & Krishnamurthy, K. (2008). Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. Journal of Food Science, 73, C400–C404.

    Article  CAS  Google Scholar 

  14. Yang, W., Mwakatage, N. R., Goodrich-Schneider, R., Krishnamurthy, K., & Rababah, T. M. (2011). Mitigation of major peanut allergens by pulsed ultraviolet light. Food and Bioprocess Technology. doi:10.1007/s11947-011-0615-6.

  15. Yang, W., Chung, S.-Y., Ajayi, O., Krishnamurthy, K., Konan, K., & Goodrich-Schneider, R. (2010). Use of pulsed ultraviolet light to reduce the allergenic potency of soybean extracts. International Journal of Food Engineering, 6, 1–2.

    Article  CAS  Google Scholar 

  16. Shriver, S., Yang, W., Chung, S.-Y., & Percival, S. (2011). Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract. International Journal of Environmental Research and Public Health, 8, 2569–2583.

    Article  CAS  Google Scholar 

  17. Li, Y., Yang, W., Chung, S.-Y., Chen, H., Teixeira, A., Gregory, J.F., Welt, B.A. and Shriver, S. (2011). Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food and Bioprocess Technology (in press).

  18. Untersmayr, E., & Jensen-Jarolim, E. (2006). The effect of gastric digestion on food allergy. Current Opinion in Allergy and Clinical Immunology, 6, 214–219.

    Article  Google Scholar 

  19. Anonymous. (1995). Simulated gastric fluid and simulated intestinal fluid, TS. The United States Pharmacopoeia 23, The National Formulary 18 (p. 2053). Rockville, MD: The United States Pharmacopeial Convention, Inc.

    Google Scholar 

  20. Liu, G., Huang, Y., Cai, Q., Weng, W., Su, W., & Cao, M. (2011). Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between Grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei). Journal of the Science of Food and Agriculture, 91, 163–170.

    Article  CAS  Google Scholar 

  21. Fu, T., Abbott, U., & Hatzos, C. (2002). Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluida comparative study. Journal of Agricultural and Food Chemistry, 50, 7154–7160.

    Article  CAS  Google Scholar 

  22. Bublin, M., Radauer, C., Knulst, A., Wagner, S., Scheiner, O., Mackie, A., Mills, E., & Breiteneder, H. (2008). Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatin-like protein. Molecular Nutrition & Food Research, 52, 1130–1139.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Bannon, G. (2004). What makes a food protein an allergen? Current Allergy and Asthma Reports, 4, 43–46.

    Article  Google Scholar 

  25. Moreno, F. (2007). Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomedicine and Pharmacotherapy, 61, 50–60.

    Article  CAS  Google Scholar 

  26. Huang, Y., Liu, G., Cai, Q., Weng, W., Maleki, S., Su, W., & Cao, M. (2010). Stability of major allergen tropomyosin and other food proteins of mud crab (Scylla serrata) by in vitro gastrointestinal digestion. Food and Chemical Toxicology, 48, 1196–1201.

    Article  CAS  Google Scholar 

  27. Hur, S. J., Lim, B. O., Decker, E., & McClements, D. (2011). In vitro human digestion models for food applications. Food Chemistry, 125, 1–12.

    Article  CAS  Google Scholar 

  28. Sen, M., Kopper, R., Pons, L., Abraham, E., Burks, A., & Bannon, G. (2002). Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes. Journal of Immunology, 169, 882–887.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade W. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W.W., Shriver, S.K., Chung, Sy. et al. In Vitro Gastric and Intestinal Digestions of Pulsed Light-Treated Shrimp Extracts. Appl Biochem Biotechnol 166, 1409–1422 (2012). https://doi.org/10.1007/s12010-011-9534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9534-2

Keywords

Navigation