Skip to main content

Strategies to Overcome Oxygen Transfer Limitations During Hairy Root Cultivation of Azadiracta indica for Enhanced Azadirachtin Production

Abstract

The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O2 in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20–100% (v/v) O2 in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O2 in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3–2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1–4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.

    Article  CAS  Google Scholar 

  2. 2.

    Kanokwaree, K., & Doran, P. M. (1997). Biotechnology Bioengineering, 55, 520–526.

    Article  CAS  Google Scholar 

  3. 3.

    Asplund, P. T., & Curtis, W. R. (2001). Biotechnology Progress, 17, 481–489.

    Article  CAS  Google Scholar 

  4. 4.

    Jeong, C. S., Chakrabarty, D., Hahna, E. J., Lee, H. L., & Paek, K. Y. (2006). Biochemical Engineering Journal, 27, 252–263.

    Article  CAS  Google Scholar 

  5. 5.

    Yu, S., & Doran, P. M. (1994). Biotechnology Bioengineering, 44, 880–887.

    Article  CAS  Google Scholar 

  6. 6.

    Yu, S., Mahagamasekera, M. G. P., Williams, G. R. C., Kanokwaree, K., & Doran, P. M. (1997). In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 139–150). Amsterdam: Harwood.

    Google Scholar 

  7. 7.

    Weathers, P. J., Wyslouzil, B. E., Wobbe, K. K., Kim, Y. J., & Yigit, E. (1999). In Vitro Cellular and Developmental Biology- Plant, 35, 286–289.

    Article  CAS  Google Scholar 

  8. 8.

    Shiao, T., & Doran, P. M. (2000). Journal of Biotechnology, 83, 199–210.

    Article  CAS  Google Scholar 

  9. 9.

    Leathers, R. R., Smith, M. A. L., & Christie, A. J. (1995). In J. A. Christie, T. Kozai, & M. L. Smith (Eds.), Automation and environmental control in plant tissue culture (pp. 187–214). Dordrecht: Kluwer.

    Google Scholar 

  10. 10.

    Williams, G. R. C., & Doran, P. M. (1995). Australian Biotechnology, 5, 92–94.

    CAS  Google Scholar 

  11. 11.

    Tescione, L., Ramakrishnan, D., & Curtis, W. R. (1997). Enzyme and Microbial Technology, 20, 207–213.

    Article  CAS  Google Scholar 

  12. 12.

    Han, J., & Zhong, J. J. (2003). Enzyme and Microbial Technology, 32, 498–503.

    Article  Google Scholar 

  13. 13.

    Schlatmann, J. E., Nuutilam, A. M., van Gulik, W. M., ten Hoopen, H. G. J., Verpoorte, R., & Heijhen, J. J. (1993). Biotechnology Bioengineering, 41, 253–262.

    Article  CAS  Google Scholar 

  14. 14.

    Liu, Y. S., & Wu, J. Y. (2006). Journal of Applied Microbiology, 101, 1033–1038.

    Article  CAS  Google Scholar 

  15. 15.

    Murashige, T., & Skoog, F. (1962). Physiology Plant, 15, 473–497.

    Article  CAS  Google Scholar 

  16. 16.

    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  17. 17.

    Prakash, G., Emmannuel, C. J. S. K., & Srivastava, A. K. (2005). Biotechnology and Bioprocess Engineering, 10, 198–204.

    Article  CAS  Google Scholar 

  18. 18.

    Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  19. 19.

    Brunner, I., Brodbeck, S., & Walthert, L. (2002). Forest Ecology and Management, 165, 75–84.

    Article  Google Scholar 

  20. 20.

    Martin, Y., & Vermette, P. (2005). Biomaterials, 26, 7481–7503.

    Article  CAS  Google Scholar 

  21. 21.

    Pinheiro, R., Belo, I., & Mota, M. (2000). Enzyme and Microbial Technology, 26, 756–762.

    Article  CAS  Google Scholar 

  22. 22.

    Kim, Y., Wyslouzil, B., & Weathers, P. (2001). Plant Cell Report, 20, 451–455.

    Article  CAS  Google Scholar 

  23. 23.

    Souret, F. F., Kim, Y., Wyslouzil, B. E., Wobbe, K. K., & Weathers, P. J. (2003). Biotechnology Bioengineering, 83, 653–667.

    Article  CAS  Google Scholar 

  24. 24.

    Curtis, W. R. (2005). Plant Cell Tissue and Organ Culture, 81, 255–264.

    Article  Google Scholar 

  25. 25.

    Liu, C., Wang, Y., Guo, C., Ouyang, F., Ye, H., & Li, G. (1998). Bioprocess Engineering Journal, 19, 389–392.

    Google Scholar 

  26. 26.

    Lee, B. S., & Kim, E. K. (2004). Enzyme and Microbial Technology, 35, 639–647.

    Article  CAS  Google Scholar 

  27. 27.

    Newman, L. A., & Reynolds, C. M. (2005). Trends in Biotechnology, 23, 6–8.

    Article  CAS  Google Scholar 

  28. 28.

    Dumont, E., Andrès, Y., & Le Cloirec, P. (2006). Biochemical Engineering Journal, 30, 245–252.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srivastava, S., Srivastava, A.K. Strategies to Overcome Oxygen Transfer Limitations During Hairy Root Cultivation of Azadiracta indica for Enhanced Azadirachtin Production. Appl Biochem Biotechnol 167, 1818–1830 (2012). https://doi.org/10.1007/s12010-011-9531-5

Download citation

Keywords

  • Hairy roots
  • Oxygen
  • Air-flow rate
  • Oxygen vectors
  • Azadirachtin
  • Growth
  • Productivity