Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae

Abstract

Black soldier fly (BSF) larvae (Hermetia illucens), feeding on leachate from decaying vegetable and food scrap waste, increase ammonia (NH +4 ) concentration five- to sixfold relative to leachate unprocessed by larvae. NH +4 in larva-processed leachate reached levels as high as ∼100 mM. Most of this NH +4 appears to have come from organic nitrogen within the frass produced by the larvae as they fed on leachate. In nitrate-enriched solutions, BSF larvae also facilitate dissimilatory nitrate reduction to ammonia. The markedly higher concentration of NH +4 recovered in leachates processed with BSF larvae and concomitant diversion of nutrients into insect biomass (itself a valuable feedstock) indicate that the use of BSF larvae in processing leachate of decaying organic waste could be advantageous in offsetting capital and environmental costs incurred in composting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Batzli, J. M., & Dawson, J. O. (1999). Canadian Journal of Botany, 77, 1373–1377.

    CAS  Google Scholar 

  2. 2.

    Berridge, M. J. (1965). Journal of Experimental Biology, 43, 535–552.

    CAS  Google Scholar 

  3. 3.

    Bondari, K., & Sheppard, D. C. (1987). Aquaculture and Fisheries Management, 18, 209–220.

    Google Scholar 

  4. 4.

    Brown, A. W. A. (1938). Biochemical Journal, 32, 895–902.

    CAS  Google Scholar 

  5. 5.

    Brown, A. W. A. (1938). Biochemical Journal, 32, 903–912.

    CAS  Google Scholar 

  6. 6.

    Burgin, A. J., & Hamilton, S. K. (2007). Frontiers in Ecology and the Environment, 5, 89–96.

    Article  Google Scholar 

  7. 7.

    Conrad, R. (1996). Microbiological Reviews, 60, 609–640.

    CAS  Google Scholar 

  8. 8.

    Diaz, L. F., & Trezek, G. J. (1979). Compost Science and Land Utilization, 20, 27–30.

    CAS  Google Scholar 

  9. 9.

    Diener, S., et al. (2011). In M. Alamgir, et al. (Eds.). Proc. Waste Safe—2nd International Conference on Solid Waste Management in the Developing Countries, Khulna, Bangladesh, pp.52.

  10. 10.

    Escalante-Semerena, J. C., Blakemore, R. P., & Wolfe, R. S. (1980). Applied and Environmental Microbiology, 40, 429–430.

    CAS  Google Scholar 

  11. 11.

    Green, T. R., & Popa, R. (2011). Applied Biochemistry and Biotechnology, 165, 270–278.

    Article  CAS  Google Scholar 

  12. 12.

    Hale, O. L. (1973). Journal of the Georgia Entomological Society, 8, 16–20.

    Google Scholar 

  13. 13.

    Hem, S., Toure, S., Sagbla, C., & Legendre, M. (2008). African Journal of Biotechnology, 7, 1192–1198.

    Google Scholar 

  14. 14.

    Hunter, M. D. (2001). Agricultural and Forest Entomology, 3, 77–84.

    Article  Google Scholar 

  15. 15.

    Jenkins, D. (1967). Advances in Chemistry Series, 73, 265–280.

    Google Scholar 

  16. 16.

    Krogmann, U., & Woyczechowski, H. (2000). Waste Management & Research, 18, 235–248.

    CAS  Google Scholar 

  17. 17.

    Li, Q., et al. (2011). Fuel, 90, 1545–1548.

    Article  CAS  Google Scholar 

  18. 18.

    Mattson, W. J., & Addy, N. D. (1975). Science, 190, 515–522.

    Google Scholar 

  19. 19.

    Myers, H. M., et al. (2008). Environmental Entomology, 37, 11–15.

    Article  Google Scholar 

  20. 20.

    Newton, G. L., et al. (1977). Journal of Animal Science, 44, 395–400.

    CAS  Google Scholar 

  21. 21.

    Popa, R., & Green, T. R. (2011). Insects, leachates and the recycling of nutrients. Journal of Economic Entomology. (in press).

  22. 22.

    Ro, K. S., Choi, H. M., & Tsai, F. J. (1997). Journal of the Environmental Science and Health, Part A, 32, 367–390.

    Article  Google Scholar 

  23. 23.

    Robinson, W. (1935). Journal of Parasitology, 21, 354–358.

    Article  CAS  Google Scholar 

  24. 24.

    Sealey, W. M., et al. (2011). Journal of the World Aquaculture Society, 42, 34–45.

    Article  Google Scholar 

  25. 25.

    Serraj, R., Sinclair, T. R., & Purcell, L. C. (1999). Journal of Experimental Botany, 50, 143–155.

    Article  CAS  Google Scholar 

  26. 26.

    Sheppard, D. C., et al. (2002). Journal of Medical Entomology, 39, 695–698.

    Article  Google Scholar 

  27. 27.

    St-Hilaire, S., et al. (2007). Journal of the World Aquaculture Society, 38, 59–67.

    Article  Google Scholar 

  28. 28.

    Swank, W. T., et al. (1981). Oecologia, 51, 297–299.

    Article  Google Scholar 

  29. 29.

    Tiedje, J. M. (1988). In A. J. B. Zehnder (Ed.), Environmental microbiology of anaerobes (pp. 179–244). New York: Wiley.

    Google Scholar 

  30. 30.

    Van Wijnen, H., Van der Wal, R., & Bakker, J. P. (1999). Oecologia, 118, 225–231.

    Article  Google Scholar 

  31. 31.

    Veraart, A. J., de Klein, J. J. M., & Scheffer, M. (2011). PLoS One, 6, e18508.

    Article  CAS  Google Scholar 

  32. 32.

    Wigglesworth, V. B. (1931). Journal of Experimental Biology, 8, 443–451.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radu Popa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Green, T.R., Popa, R. Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae. Appl Biochem Biotechnol 166, 1381–1387 (2012). https://doi.org/10.1007/s12010-011-9530-6

Download citation

Keywords

  • Compost leachate
  • Black soldier fly larvae
  • Hermetia illucens
  • Treatment
  • Ammonium