Skip to main content
Log in

Novel Copper-Based Therapeutic Agent for Anti-Inflammatory: Synthesis, Characterization, and Biochemical Activities of Copper(II) Complexes of Hydroxyflavone Schiff Bases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Four hydroxyflavone derivatives have been synthesized with the aim of obtaining a good model of superoxide dismutase. Better to mimic the natural metalloenzyme, copper complexes have been designed. The Cu(II) complexes of general formulae, [CuL] where L = 5-hydroxyflavone-o-phenylenediamine (L1H2)/m-phenylenediamine (L2H2) and 3-hydroxyflavone-o-phenylenediamine (L3H2)/m-phenylenediamine (L4H2) have been synthesized. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Redox behavior of copper complexes was studied and the present ligand systems stabilize the unusual oxidation state of the copper ion during electrolysis. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans. Superoxide dismutase and anti-inflammatory activities of the copper complexes have also been measured and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamada, S. (1999). Coordination Chemistry Reviews, 192, 537.

    Article  Google Scholar 

  2. Jeewoth, T., Bhowon, M. G., & Wah, H. L. K. (1999). Transition Metal Chemistry, 24, 445.

    Article  CAS  Google Scholar 

  3. Saczewski, F., Dziemidowicz-Borys, E., Bednavski, P. J., Grunert, R., Gdaniec, M., & Tabin, P. (2006). Journal of Inorganic Biochemistry, 100, 1389.

    Article  CAS  Google Scholar 

  4. Anacona, J. R., Rodriguez, C., & Rodriguez-Barbarin, M. C. (2004). Monatshefte fur Chemie, 135, 785.

    CAS  Google Scholar 

  5. Anacona, J. R., Nusetti, O., Gutierrez, C., & Loroño, D. (2002). Journal of Coordination Chemistry, 55, 1433.

    Article  CAS  Google Scholar 

  6. Guinovart, C., Navia, M. M., & Tanner, M. (2006). Current Molecular Medicine, 6, 137.

    Article  CAS  Google Scholar 

  7. Rice-Evans, C. (2001). Current Medicinal Chemistry, 8, 797.

    CAS  Google Scholar 

  8. Swearingen, J. K., & West, D. X. (2001). Transition Metal Chemistry, 26, 252.

    Article  CAS  Google Scholar 

  9. Sorenson, J. R. J. (1996). Journal of Medicinal Chemistry, 19, 135.

    Article  Google Scholar 

  10. Vogel, A. I. (1969). Text book of quantitative inorganic analysis (7th edition). London.

  11. Looker, L. H., Edman, J. R., & Dappen, J. I. (1964). Journal of Heterocyclic Chemistry, 1, 141.

    Article  CAS  Google Scholar 

  12. Arudi, R. L., Allen, A. O., & Bielski, B. H. J. (1981). FEBS Letters, 135, 265.

    Article  CAS  Google Scholar 

  13. Pereira, R. M., Andrades, N. E., Paulino, N., Sawaya, A. C., Eberlin, M. N., Marcucci, M. C., et al. (2007). Molecules, 12(7), 1352–1366.

    Article  CAS  Google Scholar 

  14. Geary, W. J. (1971). Coordination Chemistry Reviews, 7, 81–122.

    Article  CAS  Google Scholar 

  15. Nakamoto, K. (1988). Spectroscopy and structure of metal chelate compounds (p. 214). New York: Wiley.

    Google Scholar 

  16. Mostahar, S., Alam, S., & Islam, A. (2006). Indian Journal of Chemistry, 45B, 1478–1486.

    CAS  Google Scholar 

  17. Sarkar, S., Dhara, P. K., Nethaji, M., & Chattopadhyay, P. (2009). Journal of Coordination Chemistry, 62, 817–824.

    Article  CAS  Google Scholar 

  18. Li, T. R., Yang, Z. Y., Wang, B. D., & Qin, D. D. (2008). European Journal of Medicinal Chemistry, 43, 1688.

    Article  Google Scholar 

  19. Chandra, S., & Gupta, L. K. (2005). Spectrochimica Acta A, 61, 269.

    Article  Google Scholar 

  20. Gaballa, A. S., Asker, M. S., Barakat, A. S., & Teleb, S. M. (2007). Spectrochimica Acta A, 67, 114–121.

    Article  Google Scholar 

  21. Diaz, A., Cao, R., Fargoso, A., & Sanchez, I. (1999). Inorganic Chemistry Communications, 2, 358.

    Article  CAS  Google Scholar 

  22. Patole, J., Dutta, S., Padhye, S., & Sinn, E. (2001). Inorganica Chimica Acta, 318, 207–211.

    Article  CAS  Google Scholar 

  23. Anjaneyula, Y., & Rao, R. P. (1986). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 16, 257–272.

    Article  Google Scholar 

  24. Anacona, J. R., Lorono, D., Azocar, M., & Atencio, R. (2009). Journal of Coordination Chemistry, 62, 951.

    Article  CAS  Google Scholar 

  25. Levinson, W., & Jawetz, E. (1996). Medical microbiology and immunology, 4th Ed. Stanford.

  26. Mishra, L., & Singh, V. K. (1997). Indian Journal of Chemistry Section A, 32, 446.

    Google Scholar 

  27. Satoskar, R. S., & Bhandarkar, S. D. (1933). Pharmacology and Pharmacotherapeutics (13th ed., p. 252). Bombay: Popular Prakash Pvt Ltd.

    Google Scholar 

  28. Bhirud, R. G., & Srivastava, T. S. (1990). Inorganica Chimica Acta, 173, 121.

    Article  CAS  Google Scholar 

  29. Blahova, M., Tumova, I., Sokolik, J., Orosova, I., & Svec, P. (1998). Ceská a Slovenská Farmacie, 47, 166–9.

    CAS  Google Scholar 

  30. Zhiqiang, S., Lei, W. Y., Li, L., Chen, Z. H., & Liu, W. P. (1998). Inflammopharmacology, 6, 357–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to the Chairman, Noorul Islam University for his constant encouragement and providing research facilities. The authors gratefully acknowledge DST, New Delhi for financial support under INSPIRE fellowship (IF 10544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J., Nagashri, K. Novel Copper-Based Therapeutic Agent for Anti-Inflammatory: Synthesis, Characterization, and Biochemical Activities of Copper(II) Complexes of Hydroxyflavone Schiff Bases. Appl Biochem Biotechnol 167, 1446–1458 (2012). https://doi.org/10.1007/s12010-011-9529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9529-z

Keywords

Navigation