Skip to main content
Log in

Fed-batch Anaerobic Valorization of Slaughterhouse By-products with Mesophilic Microbial Consortia Without Methane Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work aimed at setting up a fully instrumented, laboratory-scale bioreactor enabling anaerobic valorization of solid substrates through hydrogen and/or volatile fatty acid (VFA) production using mixed microbial populations (consortia). The substrate used was made of meat-based wastes, especially from slaughterhouses, which are becoming available in large amounts as a consequence of the growing constraints for waste disposal from meat industry. A reconstituted microbial mesophilic consortium without Archaebacteria (methanogens), named PBr, was cultivated in a 5-L anaerobic bioreactor on slaughterhouse wastes. The experiments were carried out with sequential fed-batch operations, including liquid medium removal from the bioreactor and addition of fresh substrate. VFAs and nitrogen were the main metabolites observed, while hydrogen accumulation was very low and no methane production was evidenced. After 1,300 h of culture, yields obtained for VFAs reached 0.38 g/g dry matter. Strain composition of the microbial consortium was also characterized using molecular tools (temporal temperature gradient gel electrophoresis and gene sequencing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Renewable and Sustainable Energy Reviews, 14, 578–597.

    Article  CAS  Google Scholar 

  2. Ziegler, J. (2007) Draft report of the special rapporteur on the Right to Food to the General Assembly, 62/2007T.

  3. Scharlemann, J. P. W., & Laurance, W. F. (2008). Science, 319, 43–44.

    Article  CAS  Google Scholar 

  4. Das, D. (2001). International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  5. Sahlström, L. (2003). Bioresource Technology, 87, 161–166.

    Article  Google Scholar 

  6. Rodríguez-Abalde, A., Fernández Silvestre, B.G., & Flotats X. (2011) Waste Management, 31, 1488–1493.

    Article  Google Scholar 

  7. Braber, K. (1995). Biomass & Bioenergy, 9, 365–376.

    Article  CAS  Google Scholar 

  8. Shih, J. C. H. (1987). Poultry Science, 66, 946–950.

    Article  Google Scholar 

  9. Shih, J. C. H. (1993). Poultry Science, 72, 1617–1620.

    Article  Google Scholar 

  10. Koster, I. W., & Lettinga, G. (1988). Biological Wastes, 25, 51–59.

    Article  CAS  Google Scholar 

  11. Fonty, G., Joblin, K., Chavarot, M., Roux, R., Naylor, G., & Michallon, F. (2007). Applied and Environmental Microbiology, 73, 6391.

    Article  CAS  Google Scholar 

  12. Nouaille, R., Pessiot, J., Singhania Rani, R., Christophe, G., Fontanille, P., Peyret, P., Fonty, G., & Larroche, C. (2011) Rec. Prog. Gen. Proc. 101, Ed. SFGP, article n° 276.

  13. Luste, S., & Luostarinen, S. (2010). Bioresource Technology, 101, 2657–2664.

    Article  CAS  Google Scholar 

  14. Palatsi, J., Illa, J., Prenafeta-Boldu, F. X., Laureni, M., Fernandez, B., Angelidaki, I., & Flotats, X. (2010). Bioresource Technology, 101, 2243–2251.

    Article  CAS  Google Scholar 

  15. Salminen, E., & Rintala, J. (2002). Bioresource Technology, 83, 13–26.

    Article  CAS  Google Scholar 

  16. Ahn, H. K., Smith, M. C., Kondrad, S. L., & White, J. W. (2010). Applied Biochemistry and Biotechnology, 160, 965–975.

    Article  CAS  Google Scholar 

  17. Golub, K. W., Smith, A. D., Hollister, E. B., Gentry, T. J., & Holtzapple, M. T. (2011). Bioresource Technology, 102, 5066–5075.

    Article  CAS  Google Scholar 

  18. Christophe, G., Kumar, V., Nouaille, R., Gaudet, G., Fontanille, P., Pandey, A., Soccol, C. R., & Larroche, C. (2011) Brazilian Archives of Biology and Technology, in press.

  19. Ettwig, K. F., Shima, S., Pas-Schoonen, K. T., Kahnt, J., Medema, M. H., & Op den Camp, H. J. M. (2008). Environmental Microbiology, 10, 3164–3173.

    Article  CAS  Google Scholar 

  20. Bryant, M. P., & Burkey, L. A. (1953). Journal of Dairy Science, 36, 205–217.

    Article  Google Scholar 

  21. Latrille, E., Trably, E., & Larroche, C. (2011). Techniques de l'Ingénieur, BIO3351.

  22. Christophe, G., Guiavarch, E., Creuly, C., & Dussap, C.-G. (2009). Bioprocess and Biosystems Engineering, 32, 123–128.

    Article  CAS  Google Scholar 

  23. Muyzer, G., & Smalla, K. (1998). Antonie Van Leeuwenhoek, 73, 127–141.

    Article  CAS  Google Scholar 

  24. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  25. Chao, A. (1984). Scandinavian Journal of Statistics, 11, 265–270.

    Google Scholar 

  26. Hughes, J. B., Hellmann, J. J., Ricketts, T. H., & Bohannan, B. J. M. (2001). Applied and Environmental Microbiology, 67, 4399–4406.

    Article  CAS  Google Scholar 

  27. Schlosser, S., Kertész, R., & Marták, J. (2005). Separation and Purification Technology, 41, 237.

    Article  CAS  Google Scholar 

  28. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004). Chemical Record, 4, 305.

    Article  CAS  Google Scholar 

  29. Hernandez-Eugenio, G., Fardeau, M.-L., Cayol, J.-L., Patel, B. K. C., Thomas, P., Macarie, H., Garcia, J.-L., & Ollivier, B. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 1217–1223.

    Article  CAS  Google Scholar 

  30. Niu, L., Song, L., Liu, X., & Dong, X. (2009). International Journal of Systematic and Evolutionary Microbiology, 59, 2698–2701.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is a part of a scientific program supported by the French agency “Agence Nationale de la Recherche” (ANR) with the reference ANR-08-BIOE-013. The authors wish to thank partners of this programs, especially the company Biobasic Environnement and ADIV (Association pour le Développement de l’Industrie de la Viande) for giving slaughter wastes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Larroche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessiot, J., Nouaille, R., Jobard, M. et al. Fed-batch Anaerobic Valorization of Slaughterhouse By-products with Mesophilic Microbial Consortia Without Methane Production. Appl Biochem Biotechnol 167, 1728–1743 (2012). https://doi.org/10.1007/s12010-011-9516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9516-4

Keywords

Navigation