Skip to main content

Development of a Mathematical Model for Growth and Oxygen Transfer in In Vitro Plant Hairy Root Cultivations

Abstract

Genetically transformed, “Hairy roots” once developed can serve as a stable parent culture for in vitro production of plant secondary metabolites. However, the major bottleneck in the commercial exploitation of hairy roots remains its successful scale-up due to oxygen transfer limitation in three-dimensionally growing hairy root mass. Mass transfer resistances near the gas–liquid and liquid–solid boundary layer affect the oxygen delivery to the growing hairy roots. In addition, the diffusional mass transfer limitation due to increasing size of the root ball (matrix) with growth also plays a limiting role in the oxygen transfer rate. In the present study, a mathematical model is developed which describes the oxygen transfer kinetics in the growing Azadirachta indica hairy root matrix as a case study for offline simulation of process control strategies ensuring non-limiting concentrations of oxygen in the medium throughout the hairy root cultivation period. The unstructured model simulates the effect of oxygen transfer limitation in terms of efficiency factor (η) on specific growth rate (μ) of the hairy root biomass. The model is able to predict effectively the onset of oxygen transfer limitation in the inner core of the growing hairy root matrix such that the bulk oxygen concentration can be increased so as to prevent the subsequent inhibition in growth of the hairy root biomass due to oxygen transfer (diffusional) limitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Shanks, J. V., & Morgan, J. (1999). Current Opinion in Biotechnology, 10, 151–155.

    Article  CAS  Google Scholar 

  2. 2.

    Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.

    Article  CAS  Google Scholar 

  3. 3.

    Wilson, P. D. G., Hilton, M. G., Robins, R. J., & Rhodes, M. J. C. (1987). In G. W. Moody & P. B. Baker (Eds.), International conference on bioreactors and biotransformations (pp. 38–51). London: Elsevier.

    Google Scholar 

  4. 4.

    Schlatmann, J. E., Nuutila, A. M., van Gulik, W. M., ten Hoopen, H. G. J., Verpoorte, R., & Heijhen, J. J. (1993). Biotechnology and Bioengineering, 41, 253–262.

    Article  CAS  Google Scholar 

  5. 5.

    Garcia-Ochoa, F., & Gomez, E. (2009). Biotechnology Advances, 27, 153–176.

    Article  CAS  Google Scholar 

  6. 6.

    Yu, S., Mahagamasekera, M. G. P., Williams, G. R. C., Kanokwaree, K., & Doran, P. M. (1997). In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 139–150). Amsterdam: Harwood.

    Google Scholar 

  7. 7.

    Kanokwaree, K., & Doran, P. M. (1997). Biotechnology and Bioengineering, 55, 520–526.

    Article  CAS  Google Scholar 

  8. 8.

    Kanokwaree, K., & Doran, P. M. (1997). Journal of Fermentation and Bioengineering, 84, 378–381.

    Article  CAS  Google Scholar 

  9. 9.

    Kanokwaree, K., & Doran, P. M. (1998). Biotechnology Progress, 14, 479–486.

    Article  CAS  Google Scholar 

  10. 10.

    Kino-oka, M., Tsutsumi, S., & Tone, S. (1996). Journal of Chemical Engineering of Japan, 29, 531–534.

    Article  CAS  Google Scholar 

  11. 11.

    Kwok, K. H., & Doran, P. M. (1995). Biotechnology Progress, 11, 429–435.

    Article  CAS  Google Scholar 

  12. 12.

    Subroto, M. A., & Doran, P. M. (1994). Plant Cell, Tissue and Organ Culture, 38, 93–102.

    Article  CAS  Google Scholar 

  13. 13.

    Yu, S., & Doran, P. M. (1994). Biotechnology and Bioengineering, 44, 880–887.

    Article  CAS  Google Scholar 

  14. 14.

    Toivonen, L., Ojala, M., & Kauppinen, V. (1990). Biotechnology Letters, 12, 519–524.

    Article  CAS  Google Scholar 

  15. 15.

    Clausnitzer, V., & Hopmans, J. W. (1994). Plant and Soil, 103, 202–220.

    Google Scholar 

  16. 16.

    Baíza, A. M., Quiroz, A., Ruíz, J. A., & Mendoza, I. M. (1998). Plant Cell, Tissue and Organ Culture, 54, 123–130.

    Article  Google Scholar 

  17. 17.

    Binbing, H., Linden, J. C., Gujarathi, N. P., & Wickramasinghe, S. R. (2004). Biotechnology Progress, 20, 872–879.

    Article  Google Scholar 

  18. 18.

    Towler, M. J., Wyslouzil, B. E., & Weathers, P. J. (2007). Biotechnology and Bioengineering, 96, 881–891.

    Article  CAS  Google Scholar 

  19. 19.

    Srivastava, S. (2008). PhD Thesis, Indian Institute of Technology Delhi, New Delhi, India.

  20. 20.

    Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  21. 21.

    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  22. 22.

    Eibl, R., & Eibl, D. (2009). In R. Eibl, D. Eibl, R. Portner, G. Catapano, & P. Czermark (Eds.), Cell and tissue reaction engineering (p. 337). Heidelberg: Springer.

    Chapter  Google Scholar 

  23. 23.

    Ju, L. K., & Chase, G. G. (1992). Bioprocess Engineering, 8, 49–53.

    Article  CAS  Google Scholar 

  24. 24.

    Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Riet, K. (1990). Applied and Environmental Microbiology, 56, 1875–1881.

    CAS  Google Scholar 

  25. 25.

    Lee, J. M. (1992). Biochemical engineering (pp. 58–62). NJ: Prentice Hall.

    Google Scholar 

  26. 26.

    McCabe, W. L., Smith, J. C., & Harriot, P. (1993). Unit operations of chemical engineering (p. 670). New York: McGraw Hill.

    Google Scholar 

  27. 27.

    Srivastava, S., & Srivastava, A. K. (2008). Biochemical Engineering Journal, 40, 227–232.

    Article  CAS  Google Scholar 

  28. 28.

    Prakash, G., Emmannuel, C. J. S. K., & Srivastava, A. K. (2005). Biotechnology and Bioprocess Engineering, 10, 198–204.

    Article  CAS  Google Scholar 

  29. 29.

    Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  30. 30.

    Bard, Y. (1974). Nonlinear parameter estimation. New York: Academic.

    Google Scholar 

  31. 31.

    Patwardhan, P. R., & Srivastava, A. K. (2004). Biochemical Engineering Journal, 20, 21–28.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Smita Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palavalli, R.R., Srivastava, S. & Srivastava, A.K. Development of a Mathematical Model for Growth and Oxygen Transfer in In Vitro Plant Hairy Root Cultivations. Appl Biochem Biotechnol 167, 1831–1844 (2012). https://doi.org/10.1007/s12010-011-9515-5

Download citation

Keywords

  • Hairy roots
  • Oxygen transfer rate
  • Specific growth rate
  • Efficiency factor
  • Mathematical model
  • Azadirachta indica