Skip to main content
Log in

Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L−1. The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L−1 showed satisfactory H2 production performance, but the reactor fed with 25 g L−1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L−1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L−1. The AFBRs operated with glucose concentrations of 2 and 4 g L−1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

COD:

Chemical oxygen demand, mg L−1

HRT:

Hydraulic retention time, h

HPR:

Hydrogen production rate, L h−1 L−1

HY:

Hydrogen yield, mol H2 mol−1 glucose

HAc:

Acetic acid concentration, mg L−1

HBu:

Butyric acid concentration, mg L−1

HPr:

Propionic acid concentration, mg L−1

EtOH:

Ethanol concentration, mg L−1

MetOH:

Methanol concentration, mg L−1

SMP:

Soluble microbial products, mg L−1

TVFA:

Total volatile fatty acids, mg L−1

VFA:

Volatile fatty acids, mg L−1

AFBR:

Anaerobic fluidized bed reactor

FID:

Flame ionization detector

R2:

Reactor fed with glucose concentration of 2 g L−1

R4:

Reactor fed with glucose concentration of 4 g L−1

R10:

Reactor fed with glucose concentration of 10 g L−1

R25:

Reactor fed with glucose concentration of 25 g L−1

References

  1. Das, D., & Veziroglu, T. N. (2001). Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  2. Bockris, J. Ó. M. (2002). The origin of ideas on a hydrogen economy and its solution to the decay of the environment. International Journal of Hydrogen Energy, 27, 731–740.

    Article  CAS  Google Scholar 

  3. Wang, J., & Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 34, 799–811.

    Article  CAS  Google Scholar 

  4. Fang, H. H. P., Zhang, T., & Liu, H. (2002). Microbial diversity of a mesophilic hydrogen-producing sludge. Applied Microbiology and Biotechnology, 58, 112–118.

    Article  CAS  Google Scholar 

  5. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  6. Kotay, S. M., & Das, D. (2008). Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 33, 258–263.

    Article  Google Scholar 

  7. Mohan, S. V. (2009). Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: Process evaluation towards optimization. International Journal of Hydrogen Energy, 34, 7460–7474.

    Article  Google Scholar 

  8. Foresti, E., Zaiat, M., & Vallero, M. (2006). Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Bio/Technology, 5, 3–19.

    Article  CAS  Google Scholar 

  9. Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  10. Van Ginkel, S., Sung, S., & Lay, J. J. (2001). Biohydrogen production as a function of pH and substrate concentration. Environmental Science and Technology, 35, 4726–4730.

    Article  CAS  Google Scholar 

  11. Lo, Y. C., Chen, W. M., Hung, C. H., Chen, S. D., & Chang, J. S. (2008). Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research, 42, 827–842.

    Article  CAS  Google Scholar 

  12. Wang, B., Wan, W., & Wang, J. (2008). Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. International Journal of Hydrogen Energy, 33, 7013–7019.

    Article  CAS  Google Scholar 

  13. Lin, C. N., Wu, S. Y., & Chang, J. S. (2006). Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicon-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 31, 2200–2210.

    Article  CAS  Google Scholar 

  14. Wu, S. Y., Lin, C. N., Chang, J. S., Lee, K. S., & Lin, P. J. (2003). Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactor. Biotechnology Progress, 19, 828–832.

    Article  CAS  Google Scholar 

  15. Gavala, H. N., Skiadas, I. V., & Ahring, B. K. (2006). Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy, 31, 1164–1175.

    Article  CAS  Google Scholar 

  16. Zhang, Z. P., Tay, J. H., Show, K. Y., Yan, R., Liang, D. T., Lee, D. J., & Jiang, W. J. (2007). Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 32, 185–191.

    Article  Google Scholar 

  17. Amorim, E. L. C., Barros, A. R., Damianovic, M. H. R. Z., & Silva, E. L. (2009). Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy, 34, 783–790.

    Article  Google Scholar 

  18. Kim, S. H., Han, S. K., & Shin, H. S. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry, 41, 199–207.

    Article  CAS  Google Scholar 

  19. Maintinguer, S. I., Fernandes, B. S., Duarte, I. C. S., Saavedra, N. C., Adorno, M. A. T., & Varesche, M. B. (2008). Fermentative hydrogen production by microbial consortium. International Journal of Hydrogen Energy, 33, 4309–4317.

    Article  CAS  Google Scholar 

  20. Shida, G. M., Barros, A. R., Reis, C. M., Amorim, E. L. C., Damianovic, M. H. R. Z., & Silva, E. L. (2009). Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum. International Journal of Hydrogen Energy, 34, 3679–3688.

    Article  CAS  Google Scholar 

  21. American Public Health Association, American Water Works Association, Water Environmental Federation. (1998). Standard methods for the examination for water and wastewater (20th ed.). Washington: American Public Health Association, American Water Works Association, Water Environmental Federation.

    Google Scholar 

  22. Prakasham, R. S., Brahmaiah, P., Satish, T., & Sambasiva Rao, K. R. S. (2010). Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio. International Journal of Hydrogen Energy, 34, 9354–9361.

    Article  Google Scholar 

  23. Chen, W. M., Tseng, Z. J., Lee, K. S., & Chang, J. S. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 30, 1063–1070.

    Article  CAS  Google Scholar 

  24. Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34, 3288–3294.

    Article  CAS  Google Scholar 

  25. Barros, A. R., Amorim, E. L. C., Reis, C. M., Shida, G. M., & Silva, E. L. (2010). Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time. International Journal of Hydrogen Energy, 35, 3379–3388.

    Article  CAS  Google Scholar 

  26. Koskinen, P. E. P., Kaksonen, A. H., & Puhakka, L. A. (2007). The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnology and Bioengineering, 97, 742–758.

    Article  CAS  Google Scholar 

  27. Wu, K. J., Lo, Y. C., Chen, S. D., & Chang, J. S. (2007). Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures. Journal of the Chinese Institute of Chemical Engineers, 38, 205–213.

    Article  CAS  Google Scholar 

  28. Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  29. Fang, H. H. P., Zhu, H., & Zhang, T. (2006). Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 31, 2223–2230.

    Article  CAS  Google Scholar 

  30. Annous, B. A., Shieh, J. S., Shen, G. J., Jain, M. K., & Zeikus, J. G. (1996). Regulation of hydrogen metabolism in Butyribacterium methylotrophicum by substrate and pH. Applied Microbiology and Biotechnology, 45, 804–810.

    Article  CAS  Google Scholar 

  31. Chen, C. C., Lin, C. Y., & Chang, J. S. (2001). Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Applied Microbiology and Biotechnology, 57, 56–64.

    Article  CAS  Google Scholar 

  32. Wu, S. Y., Hung, C. H., Lin, C. N., Lee, A. S., & Chang, J. S. (2006). Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone immobilized and self-flocculated sludge. Biotechnology and Bioengineering, 93, 934–946.

    Article  CAS  Google Scholar 

  33. Zheng, X. J., & Yu, H. Q. (2005). Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. Journal of Environmental Management, 74, 65–70.

    Article  CAS  Google Scholar 

  34. Wang, Y., Zhao, Q. B., Mu, Y., Yu, H. Q., Harada, H., & Li, Y. Y. (2008). Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. International Journal of Hydrogen Energy, 33, 1164–1171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of FAPESP, CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Amorim, E.L.C., Sader, L.T. & Silva, E.L. Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor. Appl Biochem Biotechnol 166, 1248–1263 (2012). https://doi.org/10.1007/s12010-011-9511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9511-9

Keywords

Profiles

  1. Edson Luiz Silva