Skip to main content

Advertisement

Log in

Exhausted Jackknife Validation Exemplified by Prediction of Temperature Optimum in Enzymatic Reaction of Cellulases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This was the continuation of our previous study along the same line with more focus on technical details because the data are usually divided into two datasets, one for model development and the other for model validation during the development of predictive model. The widely used validation method is the delete-1 jackknife validation. However, no systematical studies were conducted to determine whether the jackknife validation with different deletions works better because the number of validations with different deletions increases in a factorial fashion. Therefore it is only small dataset that can be used for such an exhausted study. Cellulase is an enzyme playing an important role in modern industry, and many parameters related to cellulase in enzymatic reactions were poorly documented. With increased interests in cellulases in bio-fuel industry, the prediction of parameters in enzymatic reactions is listed on agenda. In this study, two aims were defined (a) which amino acid property works better to predict the temperature optimum and (b) with which deletion the jackknife validation works. The results showed that the amino acid distribution probability works better in predicting the optimum temperature of catalytic reaction by cellulase, and the delete-4, more precisely one-fifth deletion, jackknife validation works better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yan, S. and Wu, G. (2011) Applied Biochemistry and Biotechnology, 165, 856–869.

    Article  CAS  Google Scholar 

  2. Chou, K. C. (2011). Journal of Theoretical Biology, 273, 236–247.

    Article  CAS  Google Scholar 

  3. Levitin, A. (2003). Introduction to the design and analysis of algorithms (1st ed.). NJ: Pearson Education.

    Google Scholar 

  4. Porter, C. T., Bartlett, G. J., & Thornton, J. M. (2004). Nucleic Acids Research, 32, D129–D133.

    Article  CAS  Google Scholar 

  5. Enzyme Structures Database. (2011). http://www.ebi.ac.uk/thornton-srv/databases/enzymes/.

  6. IntEnz. (2011). http://www.ebi.ac.uk/intenz/.

  7. Comprehensive Enzyme Information System BRENDA. (2011). http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4.

  8. Duan, C. J., & Feng, J. X. (2010). Biotechnology Letters, 32, 1765–1775.

    Article  CAS  Google Scholar 

  9. Gonçalves, A. R., Benar, P., Costa, S. M., Ruzene, D. S., Moriya, R. Y., Luz, S. M., et al. (2005). Applied Biochemistry and Biotechnology, 121–124, 821–826.

    Article  Google Scholar 

  10. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Trends in Biotechnology, 24, 549–556.

    Article  Google Scholar 

  11. Sticklen, M. (2006). Current Opinion in Biotechnology, 17, 315–319.

    Article  CAS  Google Scholar 

  12. Dashtban, M., Schraft, H., & Qin, W. (2009). International Journal of Biological Sciences, 5, 578–595.

    Article  CAS  Google Scholar 

  13. Dhepe, P. L., & Fukuoka, A. (2008). ChemSusChem, 1, 969–975.

    Article  CAS  Google Scholar 

  14. Carroll, A., & Somerville, C. (2009). Annual Review of Plant Biology, 60, 165–182.

    Article  CAS  Google Scholar 

  15. Sánchez, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  16. Kang, H. J., & Ishikawa, K. (2007). Journal of Microbiology and Biotechnology, 17, 1249–1253.

    CAS  Google Scholar 

  17. Kim, H. W., Takagi, Y., Hagihara, Y., & Ishikawa, K. (2007). Bioscience, Biotechnology, and Biochemistry, 71, 2585–2587.

    Article  CAS  Google Scholar 

  18. The UniProt Consortium. (2010). Nucleic Acids Research, 38, D142–D148.

    Article  Google Scholar 

  19. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., & Kanehisa, M. (2008). Nucleic Acids Research, 36, D202–D205.

    Article  CAS  Google Scholar 

  20. Yang, X. Y., Shi, X. H., Meng, X., Li, X. L., Lin, K., Qian, Z. L., et al. (2010). Protein and Peptide Letters, 17, 899–908.

    Article  CAS  Google Scholar 

  21. Burlingame, A. L., & Carr, S. A. (1996). Mass spectrometry in the biological sciences. Totowa: Humana Press.

    Book  Google Scholar 

  22. Zamyatin, A. A. (1972). Progress in Biophysics and Molecular Biology, 24, 107–123.

    Article  Google Scholar 

  23. Darby, N. J., & Creighton, T. E. (1993). Journal of Molecular Biology, 232, 873–896.

    Article  CAS  Google Scholar 

  24. Kyte, J., & Doolittle, R. F. (1982). Journal of Molecular Biology, 157, 105–132.

    Article  CAS  Google Scholar 

  25. Trinquier, G., Sanejouand, Y. H., & Hausman, R. E. (1998). Protein Engineering, 11, 153–169.

    Article  CAS  Google Scholar 

  26. Cooper, G. M. (2004). The cell: A molecular approach (p. 51). Washington: ASM Press.

    Google Scholar 

  27. Dwyer, D. S. (2005). BMC Chemical Biology, 5, 2.

    Article  Google Scholar 

  28. Chou, P. Y., & Fasman, G. D. (1978). Advances in Enzymology and Related Subjects of Biochemistry, 47, 45–148.

    CAS  Google Scholar 

  29. Wu, G., & Yan, S. (2002). Molecular Biology Today, 3, 55–69.

    CAS  Google Scholar 

  30. Wu, G., & Yan, S. (2006). Acta Pharmacologica Sinica, 27, 513–526.

    Article  CAS  Google Scholar 

  31. Wu, G., & Yan, S. (2006). Protein and Peptide Letters, 13, 377–384.

    Article  CAS  Google Scholar 

  32. Yan, S., & Wu, G. (2010). Journal of Guangxi Academy of Sciences, 17, 145–150.

    Google Scholar 

  33. Wu, G., & Yan, S. (2008). Lecture notes on computational mutation. New York: Nova.

    Google Scholar 

  34. Feller, W. (1968). An introduction to probability theory and its applications, Vol. I (3rd ed.). New York: Wiley.

    Google Scholar 

  35. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston: PWS Publishing Company.

    Google Scholar 

  36. Demuth, H., & Beale, M. (2001). Neural network toolbox for use with MatLab. User’s guide. Version 4.

  37. MathWorks Inc. (2001). MatLab—The Language of Technical Computing (version 6.1.0.450, release 12.1). 1984–2001.

  38. Chou, K. C., & Shen, H. B. (2007). Analytical Biochemistry, 370, 1–16.

    Article  CAS  Google Scholar 

  39. Chou, K. C., & Shen, H. B. (2010). Natural Science, 2, 1090–1103.

    Article  CAS  Google Scholar 

  40. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practices of statistics in biological research (3rd ed., pp. 203–218). New York: W. H. Freeman.

    Google Scholar 

  41. Wu, G., Cossettini, P., & Furlanut, M. (1996). Pharmacological Research, 34, 47–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Guangxi Science Foundation (07-109-001-3, 0907016, 10-046-06, 11-031-11, 2010GXNSFF013003, and 2010GXNSFA013046). The authors wish to thank the Library of Guangxi Zhuang Autonomous Region for purchasing the book, Biometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary data

(XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wu, G. Exhausted Jackknife Validation Exemplified by Prediction of Temperature Optimum in Enzymatic Reaction of Cellulases. Appl Biochem Biotechnol 166, 997–1007 (2012). https://doi.org/10.1007/s12010-011-9487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9487-5

Keywords