Skip to main content
Log in

Analysis of the Production Process of Optically Pure d-Lactic Acid from Raw Glycerol Using Engineered Escherichia coli Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure d-lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D-Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D-lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D-lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Posada, J. A. (2011). Design and analysis of technological schemes for glycerol conversion to added value products. Manizales: National University of Colombia. p. 214.

    Google Scholar 

  2. Cavalheiro, J. M. B. T., de Almeida, M. C. M. D., Grandfilis, C., & da Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochemistry, 44(5), 509–515.

    Article  CAS  Google Scholar 

  3. Posada, J. A., Hoboken, N. J., López, J. A., Higuita, J. C., & Cardona, C. A. (2011). Design and analysis of PHB production processes from crude glycerol. Process Biochemistry, 46, 30–317.

    Article  Google Scholar 

  4. Hofvendahl, K., & Hahn-Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87–107.

    Article  CAS  Google Scholar 

  5. Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423.

    Article  CAS  Google Scholar 

  6. Mazumdar, S., Clomburg, J. M., & Gonzalez, R. (2010). Escherichia coli strains engineered for homofermentative production of D-Lactic acid from glycerol. Applied and Environmental Microbiology, 76, 4327–4336.

    Article  CAS  Google Scholar 

  7. Gonzalez, R., Murarka, A., Dharmadi, Y., & Yazdani, S. S. (2008). A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metabolic Engineering, 10, 234–245.

    Article  CAS  Google Scholar 

  8. Murarka, A., Dharmadi, Y., Yazdani, S. S., & Gonzalez, R. (2008). Fermentative utilization of glycerol in Escherichia coli and its implications for the production of fuels and chemicals. Applied and Environmental Microbiology, 74, 1124–1135.

    Article  CAS  Google Scholar 

  9. Durnin, G., Clomburg, J., Yeates, Z., Alvarez, P. J. J., Zygourakis, K., Campbell, P., & Gonzalez, R. (2009). Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnology and Bioengineering, 103, 148–161.

    Article  CAS  Google Scholar 

  10. Posada, J. A., Skelton, R. L., & Cardona, C. A. (2011). Integral use of palm oil: production of biodiesel and added value compounds from glycerin. In S. A. Penna (Ed.), Oil palm: cultivation, production and dietary components. Commack: Nova Science Publisher.

    Google Scholar 

  11. Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production for multiple feedstocks. Applied Engineering in Agriculture, 22, 261–265.

    Google Scholar 

  12. Berriosa, M., Skelton, R.L. (2008). Chemical Engineering Journal, 144, 459–465.

    Google Scholar 

  13. Posada, J. A. (2010). C.C., design and analysis of fuel ethanol production from raw glycerol. Energy, 35(12), 5286–5293.

    Article  CAS  Google Scholar 

  14. Dien, B. S., Nichols, N. N., & Bothast, R. J. (2001). Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. Journal of Industrial Microbiology and Biotechnology, 27, 259–264.

    Article  CAS  Google Scholar 

  15. Zhou, S., Shanmugam, K. T., & Ingram, L. O. (2003). Functional replacement of the Escherichia coli D()-lactate dehydrogenase gene (ldhA) with the L(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Applied and Environmental Microbiology, 69, 2237–2244.

    Article  CAS  Google Scholar 

  16. Zhu, Y., Eiteman, M. A., DeWitt, K., & Altman, E. (2007). Homolactate fermentation by metabolically engineered Escherichia coli strains. Applied and Environmental Microbiology, 73, 456–464.

    Article  CAS  Google Scholar 

  17. Hong, A. A. C., Tanino, K. K., Peng, F., Zhou, S., Sun, Y., Liu, C. M., & Liu, D. H. (2009). Strain isolation and optimization of precess parameters for bioconversion of glycerol to lactic acid. Journal of Chemical Technology and Biotechnology, 84, 1576–1581.

    Article  CAS  Google Scholar 

  18. Joglekar, H. G., Rahman, I., Babu, S., Kulkarni, B. D., & Joshi, A. (2006). Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 52, 1–17.

    Article  CAS  Google Scholar 

  19. Tung, L. A., & C. J. King (1994). Industrial and Engineering Chemistry Research, 33, 3217–3223.

    Google Scholar 

  20. Kaufman, E. N., Cooper, S. P., Clement, S. L., & Little, M. H. (1995). Applied Biochemistry and Biotechnology, 51-52, 605–620.

    Article  Google Scholar 

  21. Evangelista, L.R., Z.L.N. (1996). Applied Biochemistry and Biotechnology, 57–58, 471–480.

  22. Kulprathipanja, S., Oroshar, A.R. (1991). US Patent, 5,068,418.

  23. Zheng, Y.J., Ding, X.H, P.L. Cen, C.W., & Yang, G.T. Tsao (1996). Applied Biochemistry and Biotechnology, 57–58, 627–632.

  24. Antonio, G.R., Vaccari, G., Dosi, E., Trilli, A., Rossi, M., & Matteuzzi, D. (2000). Biotechnology and Bioengineering, 67, 147–156.

  25. Srivastava, A., Roychoudhury, P.K., & Sahai, V. (1992). Biotechnology and Bioengineering. 39, 607–613.

  26. Cao, X., H.S.Y., & Koo, Y.M. (2002). Biochemical Engineering Journal, 11(2–3), 189–196.

  27. Tong, W.-Y., Fu, X.-Y., Lee, S.-M., Yu, J. Liu, J.-W., Wei, D.-Z., Koo, Y.-M. (2004). Biochemical Engineering Journal, 18(2), 89–96.

    Google Scholar 

  28. Raya-Tonetti, G., Cordoba, P., Bruno-barcena, J., Sineriz, F., & Perotti, N. (1999). Biotechnology Techniques, 13(3), 20–205.

  29. Cordoba, P.R., Ragout, A.L., Sineriz, F., & Perotti, N.I. (1996). Biotechnology Techniques, 10, 629–634.

  30. Vaccari, G., Gonzalez-Vara, A., Campi, A.L., Dosi, E., & Brigidi, P. (1993). Applied Microbiology and Biotechnology, 40, 23–27.

    Google Scholar 

  31. Senthuran, A., Senthuran, V., Mattiasson, B., & Kaul, R. (1996). Biotechnology and Bioengineering, 55, 841–853.

    Google Scholar 

  32. Lee, H-J., Xie, Y., Koo, Y-M., & Wang, N-H.L. (2004). Biotechnology Progress, 20, 179–192.

  33. Chen, C-C., Ju, L-K. (1998). Separation Science and Technology, 33(10), 1423–1437

    Google Scholar 

  34. Mintian, G., Hitara, M., Koide, M., Takanashi, H., Hano, T. (2004). Process Biochemistry, 39, 1903–1907.

    Google Scholar 

  35. Bailly, M., Balmann, H. R.-d., Aimar, P., Lutin, F. M., & Cheryan, M. (2001). Journal of Membrane Science, 191, 129–142.

    Article  CAS  Google Scholar 

  36. Bailly, M. (2002). Desalination, 144(1–3), 157–162.

    Article  CAS  Google Scholar 

  37. Habova, V., K.M., Rychtera, M., and Sekavova, B. (2004). Desalination, 163, 361–372

  38. Li, H., Menon, R. M., Knowles, C. J., Skibar, W., Sunderland, G., Dalrymple, I., & Jackman, S. A. (2004). Tetrahedron, 60, 655–661.

    Article  CAS  Google Scholar 

  39. Hong, Y. K., & Hong, W. H. (2000). Reactive extraction of succinic acid with tripropylamine (TPA) in various diluents. Biopro Eng, 22, 282–284.

    Google Scholar 

  40. Hong, Y. K., Hong, W. H., & Han, D. H. (2001). Application of reactive extraction to recovery of carboxylic acids. Biotechnology and Bioprocess Engineering, 6, 386–394.

    Article  CAS  Google Scholar 

  41. Tamada, J. A., Kertes, A., & King, C. J. (1990). Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Industrial and Engineering Chemistry Research, 29, 1319–1326.

    Article  CAS  Google Scholar 

  42. Bizek V., J.H., Kousova, A., Herberger, A., Prochazka, J. (1992). Chemical Engineering Science, 47, 1433–1440

  43. Yabannavar, V. M. (1991). D.I.C.W. Biotechnology and Bioengineering, 37, 1095–1100.

    Article  CAS  Google Scholar 

  44. Tamada, J. A., & King, C. J. (1990). Extraction of carboxylic acids with amine extractants. 2. Chemical interactions and interpretation of data. Industrial and Engineering Chemistry Research, 29, 1327–1333.

    Article  CAS  Google Scholar 

  45. Seo Y., W.H.H., & Hong, T.H. (1999). Korean Chemical Engineer, 16, (5) 556–561.

  46. Kim, J. Y., Kim, Y. J., Hong, W. H., & Wozny, G. (2000). Biotechnology and Bioprocess Engineering, 5, 196–201.

    Article  CAS  Google Scholar 

  47. Kim, Y. J., Hong, W. H., & Wozny, G. (2002). Korean Journal of Chemical Engineering, 19(5), 808–814.

    Article  CAS  Google Scholar 

  48. Choi, I., & Hong, W. H. (1999). Chemical Engineering of Japan, 32, 184–189.

    Article  CAS  Google Scholar 

  49. Posada, J. A., & Cardona, C. A. (2010). Análisis de la refinación de glicerina obtenida como co-producto en la producción de biodiesel (Validation of glycerin refining obtained as a by-Product of biodiesel production). Ingeniería y Universidad, 14, 2–27.

    Google Scholar 

  50. Nielsen, J., Villadsen, J., & Liden, G. (2003). Bioreaction engineering principles. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

Download references

Acknowledgments

The authors express their acknowledgments to the National University of Colombia at Manizales for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cardona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posada, J.A., Cardona, C.A. & Gonzalez, R. Analysis of the Production Process of Optically Pure d-Lactic Acid from Raw Glycerol Using Engineered Escherichia coli Strains. Appl Biochem Biotechnol 166, 680–699 (2012). https://doi.org/10.1007/s12010-011-9458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9458-x

Keywords

Navigation