Skip to main content

In Vitro Azadirachtin Production by Hairy Root Cultivation of Azadirachta indica in Nutrient Mist Bioreactor

Abstract

Azadirachtin, a well-known biopesticide is a secondary metabolite conventionally extracted from the seeds of Azadirachta indica. The present study involved in vitro azadirachtin production by developing hairy roots of A. indica via Agrobacterium rhizogenes-mediated transformation of A. indica explants. Liquid culture of hairy roots was established in shake flask to study the kinetics of growth and azadirachtin production. A biomass production of 13.3 g/L dry weight (specific growth rate of 0.7 day−1) was obtained after 25 days of cultivation period with an azadirachtin yield of 3.3 mg/g root biomass. To overcome the mass transfer limitation in conventionally used liquid-phase reactors, batch cultivation of hairy roots was carried out in gas-phase reactors (nutrient spray and nutrient mist bioreactor) to investigate the possible scale-up of A. indica hairy root culture. The nano-size nutrient mist particles generated from the nozzle of the nutrient mist bioreactor could penetrate till the inner core of the inoculated root matrix, facilitating uniform growth during high-density cultivation of hairy roots. A biomass production of 9.8 g/L dry weight with azadirachtin accumulation of 2.8 mg/g biomass (27.4 mg/L) could be achieved in 25 days of batch cultivation period, which was equivalent to a volumetric productivity of 1.09 mg/L per day of azadirachtin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Prakash, G., Bhojwani, S. S., & Srivastava, A. K. (2002). Biotechnology and Bioprocess Engineering, 7, 185–193.

    CAS  Article  Google Scholar 

  2. 2.

    Srivastava, S., & Srivastava, A. K. (2008). In K. G. Ramawat & J. M. Merillon (Eds.), Biotechnology: bioactive molecules and medicinal plants. Germany: Springer.

    Google Scholar 

  3. 3.

    Prakash, G., Emmannuel, C. J. S. K., & Srivastava, A. K. (2005). Biotechnology and Bioprocess Engineering, 10, 198–204.

    CAS  Article  Google Scholar 

  4. 4.

    Prakash, G., & Srivastava, A. K. (2005). Process Biochemistry, 40, 3795–3800.

    CAS  Article  Google Scholar 

  5. 5.

    Prakash, G., & Srivastava, A. K. (2006). Biochemical Engineering Journal, 29, 62–68.

    CAS  Article  Google Scholar 

  6. 6.

    Prakash, G., & Srivastava, A. K. (2007). Process Biochemistry, 42, 93–97.

    CAS  Article  Google Scholar 

  7. 7.

    Prakash, G., & Srivastava, A. K. (2008). Biochemical Engineering Journal, 40, 218–226.

    CAS  Article  Google Scholar 

  8. 8.

    Giri, A., & Narasu, M. L. (2000). Biotechnology Advances, 18, 1–22.

    CAS  Article  Google Scholar 

  9. 9.

    Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.

    CAS  Article  Google Scholar 

  10. 10.

    Allan, E., Eeswara, J., Jarvis, A., Mordue (Luntz), A., Morgan, E., & Stuchbury, T. (2002). Plant Cell Report, 21, 374–379.

    CAS  Article  Google Scholar 

  11. 11.

    Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Journal of Biotechnology, 128, 281–289.

    CAS  Article  Google Scholar 

  12. 12.

    Carvalho, E. B., Holihan, S., Pearsall, B., & Curtis, W. R. (1997). In P. Doran (Ed.), Hairy roots: effect of root morphology on reactor design and operation for production of chemicals (pp. 151–167). Harwood Academic UK: Gordon and Breach.

    Google Scholar 

  13. 13.

    Wyslouzil, B. E., Waterbury, R. G., & Weathers, P. J. (2000). Biotechnology and Bioengineering, 72, 143–150.

    Article  Google Scholar 

  14. 14.

    Asplund, P. T., & Curtis, W. R. (2001). Biotechnology Progress, 17, 481–489.

    CAS  Article  Google Scholar 

  15. 15.

    Kanokwaree, K., & Doran, P. M. (1997). Biotechnology and Bioengineering, 55, 520–526.

    CAS  Article  Google Scholar 

  16. 16.

    Murashige, T., & Skoog, F. (1962). Physiology Plant, 15, 473–497.

    CAS  Article  Google Scholar 

  17. 17.

    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    CAS  Article  Google Scholar 

  18. 18.

    Srivastava, S. & Srivastava, A. K. (2006). Proceedings of national conference CHEMCON-06, Ankaleshwar, India.

  19. 19.

    Srivastava, S., Harsh, S., & Srivastava, A. K. (2008). Process Biochemistry, 43, 1121–1123.

    CAS  Article  Google Scholar 

  20. 20.

    Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    CAS  Article  Google Scholar 

  21. 21.

    Yuan, Y. J., Li, C., Hu, Z. D., & Wu, J. C. (2002). Enzyme and Microbial Technology, 30, 774–778.

    CAS  Article  Google Scholar 

  22. 22.

    Eibl, R., & Eibl, D. (2002). In K. M. Oksman-Caldentey & W. H. Barz (Eds.), Plant biotechnology and transgenic plants (pp. 163–199). New York: Marcel Dekker.

    Google Scholar 

  23. 23.

    Kim, Y. H., & Yoo, Y. J. (1993). Biotechnology Techniques, 7, 859–862.

    CAS  Article  Google Scholar 

  24. 24.

    Buitelaar, R. N., Langenhoff, A. A. N., Heidstra, R., & Tramper, J. (1991). Enzyme and Microbial Technology, 13, 487–494.

    CAS  Article  Google Scholar 

  25. 25.

    Pavlov, A., & Bley, T. (2006). Process Biochemistry, 41, 848–852.

    CAS  Article  Google Scholar 

  26. 26.

    McKelvey, S. A., Gehrig, J. A., Hollar, K. A., & Curtis, W. R. (1993). Biotechnology Progress, 9, 317–322.

    CAS  Article  Google Scholar 

  27. 27.

    Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Biotechnology and Bioengineering, 80, 454–464.

    CAS  Article  Google Scholar 

  28. 28.

    Ramakrishnan, D., & Curtis, W. R. (2004). Biotechnology and Bioengineering, 88, 248–260.

    CAS  Article  Google Scholar 

  29. 29.

    Weathers, P. J., Dilorio, A. & Cheetham, R. D. (1989) Proceedings of Biotechnology USA Conference, San Francisco, Conference Management Corp, Norwalk, CT. pp. 247–256.

  30. 30.

    Dilorio, A. A., Cheetham, R. D., & Weathers, P. J. (1992). Applied Microbiology and Biotechnology, 37, 457–462.

    Article  Google Scholar 

  31. 31.

    Baveja, S. K., Rango Rao, K. V., & Arura, J. (1989). Indian Journal of Pharmaceutical Sciences, 51, 115–120.

    CAS  Google Scholar 

  32. 32.

    Babu, V. S., Narasimhan, S., & Nair, G. M. (2006). Current Science, 91, 22–24.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srivastava, S., Srivastava, A.K. In Vitro Azadirachtin Production by Hairy Root Cultivation of Azadirachta indica in Nutrient Mist Bioreactor. Appl Biochem Biotechnol 166, 365–378 (2012). https://doi.org/10.1007/s12010-011-9430-9

Download citation

Keywords

  • Azadirachtin
  • Hairy roots
  • Azadirachta indica
  • Gas-phase reactors
  • Nutrient mist bioreactor
  • Nutrient spray bioreactor