Skip to main content
Log in

Cellulase Hydrolysis of Unsorted MSW

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfactant. Concurrently, the enzyme performance was analysed on pure cellulose in a solution of MSW wastewater. Results showed no effect of surfactant addition to the hydrolysis media as measured by viscosity and particle size distribution. MSW treatment wastewater was found to contain a high amount of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hansen, T. L., Cour Jansen, Jl, Spliid, H., Davidsson, A., & Christensen, T. H. (2007). Waste Management, 27, 510–518.

    Article  Google Scholar 

  2. Riber, C., Petersen, C., & Christensen, T. H. (2009). Waste Management, 29, 1251–1257.

    Article  CAS  Google Scholar 

  3. Consonni, S., Giugliano, M., & Grosso, M. (2005). Waste Management, 25, 123–135.

    Article  CAS  Google Scholar 

  4. Murphy, J. D., & McKeogh, E. (2004). Renewable Energy, 29, 1043–1057.

    Article  CAS  Google Scholar 

  5. Jensen, J. W., Felby, C., Joergensen, H., Roensch, G. O., & Noerholm, N. D. (2010). Waste Management, 30, 2497–2503.

    Article  CAS  Google Scholar 

  6. Viamajala, S., McMillan, J. D., Schell, D. J., & Elander, R. T. (2009). Bioresource Technology, 100, 925–934.

    Article  CAS  Google Scholar 

  7. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts & Biorefining-Biofpr, 1, 119–134.

    Article  Google Scholar 

  8. Rosgaard, L., Andric, P., Dam-Johansen, K., Pedersen, S., & Meyer, A. S. (2007). Applied Biochemistry and Biotechnology, 143, 27–40.

    Article  CAS  Google Scholar 

  9. Arantes, V. and Saddler J.N. (2010) Biotechnology for Biofuels 3.

  10. Bommarius, A. S., Katona, A., Patel, A. S., Ragauskas, A. J., Knudson, K., & Pu, Y. (2008). Metabolic Engineering, 10, 370–381.

    Article  CAS  Google Scholar 

  11. Borjesson, J., Engqvist, M., Sipos, B., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 41, 186–195.

    Article  Google Scholar 

  12. Tu, M. B., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 23, 1130–1137.

    Article  CAS  Google Scholar 

  13. Kristensen, J. B., Bruun, M. H., Tjerneld, F., & Jorgensen, H. (2007). Enzyme and Microbial Technology, 40, 888–895.

    Article  CAS  Google Scholar 

  14. Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  15. Hemmatinejad, N., Vahabzadeh, F., & Kordestani, S. S. (2002). Iranian Polymer Journal, 11, 333–338.

    CAS  Google Scholar 

  16. Geiger, G., Brandl, H., Furrer, G., & Schulin, R. (1998). Soil Biology and Biochemistry, 30, 1537–1544.

    Article  CAS  Google Scholar 

  17. Karnchanatat, A., Petsom, A., Angvanich, P. S., Piapukie, W. J., Whalley, A. J. S., Reynoldsc, C. D., et al. (2008). Enzyme and Microbial Technology, 42, 404–413.

    Article  CAS  Google Scholar 

  18. Mandels, M., & Reese, E. T. (1965) Annual Review of Phytopathology 3, 85—&.

  19. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  20. Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  21. Rosgaard, L., Pedersen, S., Cherry, J. R., Harris, P., & Meyer, A. S. (2006). Biotechnology Progress, 22, 493–498.

    Article  CAS  Google Scholar 

  22. Prakasham, R. S., Bramaiah, P., Satish, T., & Sambasiv Rao, K. R. S. (2009) International Journal of Hydrogen Energy 34:9354–9361.

    Google Scholar 

  23. Wawrzynczyk, J., Recktenwald, M., Norrlow, O., & Dey, E. S. (2008). Water Research, 42, 1555–1562.

    Article  CAS  Google Scholar 

  24. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Brady, J. W., & Foust, T. D. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  25. Dey, E. S., Szewczyk, E., Wawrzynczyk, J., & Norrlow, O. (2006). Journal of Residuals Science & Technology, 3, 97–103.

    CAS  Google Scholar 

Download references

Acknowledgements

The Danish Energy Authority and DONG Energy A/S, Denmark financially supported the project as PSO project no. 7,335 and project no. T015815, respectively. Novozymes A/S, Bagsværd, Denmark is gratefully thanked for the enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Wagner Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, J.W., Felby, C. & Jørgensen, H. Cellulase Hydrolysis of Unsorted MSW. Appl Biochem Biotechnol 165, 1799–1811 (2011). https://doi.org/10.1007/s12010-011-9396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9396-7

Keywords

Navigation