Skip to main content

Influence of Agitation Speed on Tannase Production and Morphology of Aspergillus niger FETL FT3 in Submerged Fermentation

Abstract

Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Lekha, P., & Lonsane, B. (1997). Advance Applied Microbiology, 44, 215–266.

    Article  CAS  Google Scholar 

  2. 2.

    Sabu, A., Kiran, G. S., & Pandey, A. (2005). Food Technology and Biotechnology, 43, 133–138.

    CAS  Google Scholar 

  3. 3.

    Nagalakshmi, S., Jayalakshmi, R., & Seshadri, R. (1985). Journal of Food Sciences Technology, l22, 198–201.

    Google Scholar 

  4. 4.

    Boadi, D. K., & Neufeld, R. J. (2001). Enzyme and Microbial Technology, 28, 590–595.

    Article  CAS  Google Scholar 

  5. 5.

    Hadi, T. A., Banerjee, R., & Bhattacharyya, B. C. (1994). Bioprocess Engineering, 11, 239–243.

    Article  CAS  Google Scholar 

  6. 6.

    Sabu, A., Augur, C., Swati, C., & Pandey, A. (2006). Process Biochemistry, 41, 575–580.

    Article  CAS  Google Scholar 

  7. 7.

    Darah, I., & Ibrahim, C. O. (1996). Asia Pacific Journal of Molecule Biology and Biotechnology, 4, 174–182.

    Google Scholar 

  8. 8.

    Paranthaman, R., Vidyalakshmi, R., Murugesh, S., & Singaravadivel, K. (2009). Advance in Biology Research, 3, 34–39.

    CAS  Google Scholar 

  9. 9.

    Kar, B., & Banerjee, R. (2000). Journal of Industrial Microbiology and Biotechnology, 25, 29–38.

    Article  CAS  Google Scholar 

  10. 10.

    Deschamps, A., Otuk, G., & Lebeault, J. (1983). Journal of Fermentation Technology, 61, 55–59.

    CAS  Google Scholar 

  11. 11.

    Lim, K. W., & Darah, I. (2004). Malaysian Journal of Pharmaceutical Science, 2(2), 9–17.

    Google Scholar 

  12. 12.

    Znidarsic, P., & Pavko, A. (2001). Food Technology and Biotechnology, 39, 237–252.

    Google Scholar 

  13. 13.

    Seth, M., & Chan, S. (2000). Process Biochemistry, 36, 39–44.

    Article  CAS  Google Scholar 

  14. 14.

    Barthomeuf, C., Regerat, F., & Pourat, H. (1994). Journal of Fermentation and Bioengineering, 77, 320–323.

    Article  CAS  Google Scholar 

  15. 15.

    Pourrat, H., Regerat, F., & Pourrat, A. (1985). Journal of Fermentation Technology, 63, 401–403.

    CAS  Google Scholar 

  16. 16.

    Pourrat, H., Regerat, F., Pourrat, A., & Jean, D. (1987). Biotechnology Letters, 4, 583–588.

    Article  Google Scholar 

  17. 17.

    Kim, S. W., Hwang, H. J., Xu, C. P., Choi, J. W., & Yun, J. W. (2003). Letters in Applied Microbiology, 36, 321–326.

    Article  CAS  Google Scholar 

  18. 18.

    Papagianni, M. (2004). Biotechnology Advance, 22, 189–259.

    Article  CAS  Google Scholar 

  19. 19.

    Van de Lagemaat, J., & Pyle, D. L. (2001). Chemical Engineering Journal, 84, 115–123.

    Article  Google Scholar 

  20. 20.

    Darah, I., & Ibrahim, C. O. (1998). Folia Microbiology, 43, 161–168.

    Article  CAS  Google Scholar 

  21. 21.

    Purwanto, L. A., Ibrahim, D., & Sudrajat, H. (2009). World Journal of Chemistry, 4(1), 34–38.

    CAS  Google Scholar 

  22. 22.

    Evert, R. F. (2006). The protoplast: plasma membrane, nucleus and cytoplasmic organelles. In Esau's plant anatomy: meristems, cells and tissues of the plant body: their structure, function and development (3rd ed.). Hoboken: John Wiley & Sons Inc.

    Chapter  Google Scholar 

  23. 23.

    Brieger, E. M. (1963). Identification of granular components of submicroscopical size in the bacteria cytoplasm. In Structure and ultrastructure of microorganisms: an introduction to a comparative substructural anatomy of cellular organization. New York: Academic.

    Google Scholar 

  24. 24.

    Lake, J. A. (1981). The ribosome. Scientific American, 245, 84–97.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. H. Lim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Darah, I., Sumathi, G., Jain, K. et al. Influence of Agitation Speed on Tannase Production and Morphology of Aspergillus niger FETL FT3 in Submerged Fermentation. Appl Biochem Biotechnol 165, 1682–1690 (2011). https://doi.org/10.1007/s12010-011-9387-8

Download citation

Keywords

  • Agitation speed
  • Tannase
  • Aspergillus niger FETL FT3
  • Fungal morphology