Skip to main content
Log in

Thermodynamics of Chitinase Partitioning in Soy Lecithin Liposomes and Their Storage Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The goal of this study was to define the partitioning behavior of chitinase from Trichoderma spp. in soy lecithin liposomes, using a thermodynamic approach based on the partitioning variation with temperature. An effort has been made to define the liposomes, as well as free and immobilized enzyme stability during storage at 4 and 25 °C. The partition coefficients (K o/w) were greater than 1; therefore, the standard free energies of the enzyme transfer were negative, indicating an affinity of the enzymes for encapsulation in liposomes. The enthalpy calculation led to the conclusion that the process is exothermic. The presence of enzyme decreased the liposome storage stability from 70 days to an approximately 20 days at 25 °C and 30 days at 4 °C. Monitoring of the liposome’s diameter demonstrated that their size and concentration decreased during storage. The liposome’s diameters ranged from 1.06 to 3.30 μm. The higher percentage of liposome corresponded to a diameter range from 1.06 to 1.34 μm. This percentage increased during storage. There were no evidences for liposome fusion process. The stability of immobilized enzyme was increased in comparison with free chitinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., et al. (1993). Phytopathology, 83, 302–307.

    Article  CAS  Google Scholar 

  2. Prapagdee, B., Kotchadat, K., Kumsopa, A., & Visarathanonth, N. (2007). Bioresource Technology, 7, 1353–1358.

    Article  Google Scholar 

  3. Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Phytopathology, 89, 92–99.

    Article  CAS  Google Scholar 

  4. Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). International Journal of Biological Sciences, 4, 330–337.

    CAS  Google Scholar 

  5. Estrella-Favret, A., Juarez-Ordaz, A. J., Cano-Salazar, L. F., Martínez-Hernández, J. L., & Ilina, A. (2008). Ciencia Cierta, 15, 26–29.

    Google Scholar 

  6. Baek, J. M., Howell, C. R., & Kenerley, C. M. (1999). Current Genetics, 35, 41–50.

    Article  CAS  Google Scholar 

  7. El-Katatny, M. H., Somitsch, W., Robra, K. H., El-Katatny, M. S., & Gübitz, G. M. (2000). Food Technology and Biotechnology, 38, 173–180.

    Google Scholar 

  8. Elad, Y., Chet, I., & Henis, Y. (1982). Canadian Journal of Microbiology, 28, 719–725.

    Article  CAS  Google Scholar 

  9. Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. St. Paul: The American Phytopathological Society.

    Google Scholar 

  10. Dekker, J. (1982). In J. Dekker & S. G. Georgopoulos (Eds.), In countermeasures for avoiding fungicide resistance (pp. 177–186). Wageningen: Pudoc.

    Google Scholar 

  11. Balvantin-García, C., Ilina, A., Martínez-Hernández, J. L., Cerda-Ramírez, F., & Lira, R. H. (2009). Ciencia Cierta, 19, 20–24.

    Google Scholar 

  12. Anitha, A., & Rabeeth, M. (2010). African Journal of Plant Science, 4, 061–066.

    CAS  Google Scholar 

  13. Joublanc, E., Vázquez-Gutiérrez, B. B., Ramírez-Esquivel, G., Martínez-Hernández, J. L., & Iliná, A. (2010). In C. Regalado & B. E. García (Eds.), In innovations in food science and food biotechnology in developing countries (pp. 73–84). Querétaro: AMECA.

    Google Scholar 

  14. Wang, S. L., & Chio, S. H. (1998). Enzyme and Microbial Technology, 22, 634–640.

    Article  CAS  Google Scholar 

  15. Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Critical Reviews in Food Science and Nutrition, 45, 587–605.

    Article  CAS  Google Scholar 

  16. Chaize, B., Colletier, J. P., Winterhalter, M., & Fournier, D. (2004). Artificial Cells, Blood Substitutes, and Biotechnology, 32, 67–75.

    Article  CAS  Google Scholar 

  17. Bangham, A. D. (1993). Chemistry and Physics of Lipids, 64, 275–285.

    Article  CAS  Google Scholar 

  18. Ávila, C. M., Gómez, A., & Martínez, F. (2003). Acta Farm Bonaerense, 22, 119–126.

    Google Scholar 

  19. Beare-Rogers, J. L., Bonekamp-Nasner, A., & Dieffenbacher, A. (1992). Pure and Applied Chemistry, 64, 447–454.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Lozano, H. R., & Martínez, F. (2006). Brazilian Journal of Pharmaceutical Sciences, 42, 601–613.

    CAS  Google Scholar 

  22. Ávila, C. M., & Martínez, F. (2003). Chemical & Pharmaceutical Bulletin, 51, 237–240.

    Article  Google Scholar 

  23. Sturges, H. (1926). Journal of the American Statistical Association, 21, 65–66.

    Google Scholar 

  24. Li, H. M., Sullivan, R., Moy, M., Kobayashi, D. Y., & Belanger, F. C. (2004). Mycology, 96, 526–536.

    Article  CAS  Google Scholar 

  25. Bewick, V., Cheek, L., & Ball, J. (2004). Critical Care, 8, 130–136.

    Article  Google Scholar 

  26. Martínez, F., & Gomez, A. (2002). Journal of Physical Organic Chemistry, 15, 874–880.

    Article  Google Scholar 

  27. Howell, B. A., & Chauhan, A. (2009). Langmuir, 25, 12056–12065.

    Article  CAS  Google Scholar 

  28. Sulkowski, W. W., Pentak, D., Nowak, K., & Sulkowska, A. (2005). Journal of Molecular Structure, 744, 737–747.

    Article  Google Scholar 

  29. Tanford, C. (1973). The hydrophobic effect: Formation of micelles and biological membranes. New York: Wiley.

    Google Scholar 

  30. Lampe, J. W., Zhengzheng, L., Dmochowski, I. J., Ayyaswamy, P. S., & Eckmann, D. M. (2010). Langmuir, 26, 2452–2459.

    Article  CAS  Google Scholar 

  31. Ikonen, M., Murtomäki, L., & Kontturi, K. (2010). Colloids and Surfaces. B, Biointerfaces, 78, 275–282.

    Article  CAS  Google Scholar 

  32. Pérez-Molina, A. I., Juárez-Ordaz, A. J., Gregorio-Jáuregui, K. M., Segura-Ceniceros, E. P., Martínez-Hernández, J. L., Rodríguez-Martínez, J., et al. (2011). Journal of Molecular Catalysis B: Enzymatic. doi:10.1016/j.molcatb.2011.05.004.

  33. Choi, N. S., Jeung-Ho, H., Pil, J. M., & Seung-Ho, K. (2005). Journal of Biochemistry and Molecular Biology, 38, 177–181.

    Article  CAS  Google Scholar 

  34. Suhail, A., Khan, A. A., & Husain, Q. (2005). Journal of Chemical Technology and Biotechnology, 80, 198–205.

    Article  Google Scholar 

  35. Tang, J., Esmon, N., Ferlan, I., & Fesmire, A. (1981). Thrombosis Research, 24, 359–365.

    Article  CAS  Google Scholar 

  36. Folders, J., Algra, J., Roelofs, M. S., Van-Loon, L. C., Tommassen, J., & Bitter, W. (2001). The Journal of Bacteriology, 183, 7044–7052.

    Article  CAS  Google Scholar 

  37. León-Joublanc, E. (2009). M.S. thesis. University Autonomous of Coahuila, Coahuila, Mexico.

Download references

Acknowledgments

The authors are grateful for the financial support of this project from SEP-CONACYT of Mexico No. 57118, the valuable help of Dr. E. Rodríguez Campos for discussion of this project, and to Dr. Y. Troitsky and MS A. Schluraff for reviewing this paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ilyina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano-Salazar, L.F., Juárez-Ordáz, A.J., Gregorio-Jáuregui, K.M. et al. Thermodynamics of Chitinase Partitioning in Soy Lecithin Liposomes and Their Storage Stability. Appl Biochem Biotechnol 165, 1611–1627 (2011). https://doi.org/10.1007/s12010-011-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9381-1

Keywords

Navigation