Skip to main content
Log in

Enhanced Reducing Equivalent Generation for 1,3-Propanediol Production Through Cofermentation of Glycerol and Xylose by Klebsiella pneumoniae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-Propanediol (1,3-PD) biosynthesis plays a key role in NADH consumption to regulate the intracellular reducing equivalent balance of Klebsiella pneumoniae. This study aimed to increase reducing equivalent for enhancing 1,3-PD production through cofermentation of glycerol and xylose. Adding xylose as cosubstrate resulted in more reducing equivalent generation and higher cell growth. In batch fermentation under microaerobic condition, the 1,3-PD concentration, conversion from glycerol, and biomass (OD600) relative to cofermentation were increased significantly by 9.1%, 20%, and 15.8%, respectively. The reducing equivalent (NADH) was increased by 1–3 mg/g (cell dry weight) compared with that from glycerol alone. Furthermore, 2,3-butannediol was also doubly produced as major byproduct. In fed-batch fermentation with xylose as cosubstrate, the final 1,3-PD concentration, conversion from glycerol, and productivity were improved evidently from 60.78 to 67.21 g/l, 0.52 to 0.63 mol/mol, and 1.64 to1.82 g/l/h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ji, X. J., Huang, H., Du, J., Zhu, J. G., Ren, L. J., Hu, N., et al. (2009). Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology, 100, 3410–3414.

    Article  CAS  Google Scholar 

  2. Selembo, P. A., Perez, J. M., Lloyd, W. A., & Logan, B. E. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengineering, 104, 1098–1106.

    Article  CAS  Google Scholar 

  3. Cheng, K. K., Liu, D. H., Sun, Y., & Liu, W. B. (2004). 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnology Letters, 26, 911–915.

    Article  CAS  Google Scholar 

  4. Huang, H., Gong, C. S., & Tsao, G. T. (2002). Production of 1, 3-propanediol by Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 98–100, 687–698.

    Article  Google Scholar 

  5. Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 3, 453–457.

    Google Scholar 

  6. Abbad-Andaloussi, S., Du, C., Raval, G., & Petitdemange, H. (1996). Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose. Microbiology, 142, 1149–1158.

    Article  CAS  Google Scholar 

  7. Schutz, H., & Radler, F. (1984). Anaerobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri. Systematic and Applied Microbiology, 5, 169–178.

    Google Scholar 

  8. Zeng, A. P., Biebl, H., Schlieker, H., & Deckwer, W. D. (1993). Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzyme and Microbial Technology, 15, 770–779.

    Article  CAS  Google Scholar 

  9. Zhang, Y. P., Li, Y., Du, C. Y., Liu, M., & Cao, Z. A. (2006). Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metabolic Engineering, 8, 578–586.

    Article  CAS  Google Scholar 

  10. Xu, Y. Z., Guo, N. N., Zheng, Z. M., Ou, X. J., Liu, H. J., & Liu, D. H. (2009). Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnology and Bioengineering, 104, 965–972.

    Article  CAS  Google Scholar 

  11. Zhang, Y. P., Huang, Z. H., Du, C. Y., Li, Y., & Cao, Z. A. (2009). Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metabolic Engineering, 11, 101–106.

    Article  Google Scholar 

  12. San, K. Y., Bennett, G. N., Berríos-Rivera, S. J., Vadali, R. V., Yang, Y. T., Horton, E., et al. (2002). Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metabolic Engineering, 4, 182–192.

    Article  CAS  Google Scholar 

  13. Jeffries, T. W. (1983). Utilization of xylose by bacteria, yeasts, and fungi. Advances in Biochemical Engineering/Biotechnology, 27, 1–32.

    Article  CAS  Google Scholar 

  14. Miseta, A., Tokes-Fuzesi, M., Aiello, D., & Bedwell, D. (2003). A Saccharomyces cerevisiae mutant unable to convert glucose to glucose-6-phosphate accumulates excessive glucose in the endoplasmic reticulum due to core oligosaccharide trimming. Eukaryotic Cell, 2, 534–541.

    Article  CAS  Google Scholar 

  15. Sato, K., Yoshida, Y., & Hirahata, T. (2000). On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. Journal of Bioscience and Bioengineering, 90, 294–301.

    CAS  Google Scholar 

  16. Stanley, P. E. (1986). Extraction of adenosine triphosphate from microbial and somatic acid. Methods in Enzymology, 133, 14–22.

    Article  CAS  Google Scholar 

  17. Abbad-Andaloussi, S., Amne, J., Ferard, P., & Petitdemange, H. (1998). Effect of glucose on glycerol metabolism by Clostridium butyricum. Journal of Applied Microbiology, 84, 515–522.

    Article  CAS  Google Scholar 

  18. Yang, G., Tian, J., & Li, J. (2007). Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Applied Microbiology and Biotechnology, 73, 1017–1024.

    Article  CAS  Google Scholar 

  19. Ragout, A., Sineriz, F., Diekmann, H., & Valdez, G. F. (1996). Shift in the fermentation balance of Lactobacillus reuteri in the presence of glycerol fermentation. Biotechnology Letters, 18, 1105–1108.

    Article  CAS  Google Scholar 

  20. Tong, I., & Cameron, D. C. (1992). Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon gene. Applied Biochemistry and Biotechnology, 34-35, 149–159.

    Article  CAS  Google Scholar 

  21. Petrov, P., & Petrova, P. (2009). High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied Microbiology and Biotechnology, 84, 659–665.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the key program of National Natural Science Foundation of China (No. 200936002), the National Basic Research Program of China (No. 2011CB710800), and the National High Technology Research and Development Program of China (No. 2006AA020103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, P., Lu, Sg., Huang, H. et al. Enhanced Reducing Equivalent Generation for 1,3-Propanediol Production Through Cofermentation of Glycerol and Xylose by Klebsiella pneumoniae . Appl Biochem Biotechnol 165, 1532–1542 (2011). https://doi.org/10.1007/s12010-011-9373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9373-1

Keywords

Navigation