Skip to main content
Log in

Thermostable Bacterial Endoglucanases Mined from Swiss-Prot Database

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As one critical enzyme in deconstructing complicated cellulose matrix, endoglucanase (EG) is needed to exhibit high activity and thermostability under severe industrial conditions. Driven by this purpose, EGtf1 (Q08166) and EGtf2 (Q7X2N2), with relatively high specific activities, were selected out of 43 putative EG genes from SWISS-PROT database. These distinguished EGs were successfully overexpressed in Escherichia coli and purified by one-step affinity chromatography. The maximal activity was shown at approximate pH 5.0 and 50 °C. It is worth noting that EGtf1 and EGtf2 displayed outstanding thermostability with a half-life of up to 1,386 h at 50 °C, which is almost 100-fold higher than other reported EGs. Furthermore, the presence of various metal ions (1 mM) or organic solvents (50%, v/v) did not cause significant effect on the activities of EGtf1 and EGtf2 and even showed 2.1- and 2.7-fold enhancement in the case of dodecanol. All these features, especially the excellent thermostability of EGtf1 and EGtf2, enable them to become a good candidate for further protein engineering to realize the ultimate practical application in biomass industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, Y., Wang, X., Tang, R., Yu, S., Zheng, B., & Feng, Y. (2010). A novel thermostable cellulase from Fervidobacterium nodosum. Journal of Molecular Catalysis B Enzymatic, 66, 294–301.

    Article  CAS  Google Scholar 

  2. Liu, S., Shibu, M. A., Jhan, H., Lo, C. T., & Peng, K. (2010). Purification and characterization of novel glucanases from Trichoderma harzianum ETS 323. Journal of Agricultural and Food Chemistry, 58, 10309–10314.

    Article  CAS  Google Scholar 

  3. Lee, L., Paul, W., Willem, Z., & Isak, P. (2002). Micobial cellulase utilization: fundametals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  Google Scholar 

  4. Priit, V., Sild, V., Pettersson, G., & Johansson, G. (1998). The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface - erosion model. European Journal of Biochemistry, 253, 469–475.

    Article  Google Scholar 

  5. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Adsorption of Trichoderma reesei CBHI and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  6. Várnai, A., Viikari, L., Marjamaa, K., & Siika-aho, M. (2010). Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresource Technology. doi:10.1016/j.biortech.2010.07.120.

  7. Watanabe, H., Nakamura, M., Tokuda, G., Yamaoka, I., Scrivener, A. M., & Noda, H. (1997). Site of secretion and properties of endogenous endo-β-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochemistry and Molecular Biology, 27, 305–3139.

    Article  CAS  Google Scholar 

  8. Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-gIucanase. Zoological Science, 14, 83–93.

    Article  CAS  Google Scholar 

  9. Okada, G., & Nishizawa, K. (1975). Enzymatic studies on a cellulase system of Trichoderma viride III. Transglycosylation properties of two cellulase components of random type. Journal of Biochemistry, 78, 297–306.

    CAS  Google Scholar 

  10. Okada, G. (1976). Enzymatic studies on a cellulase system of Trichoderma viride. IV. Purification and properties of a less-random type cellulase. Journal of Biochemistry, 80, 913–922.

    CAS  Google Scholar 

  11. Kwon, I., Ekino, K., Goto, M., & Furukawa, K. (1999). Heterologous expression and characterization of endoglucanase I (EGI) from Trichoderma viride HK-75. Bioscience, Biotechnology, and Biochemistry, 63, 1714–1720.

    Article  CAS  Google Scholar 

  12. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley β-glucan and xyloglucan. World Journal of Microbiology and Biotechnology, 25, 1189–1197.

    Article  CAS  Google Scholar 

  13. Mamma, D., Hatzinikolaou, D., Kekos, D., Stamatis, H., & Kalogeris, E. (2009). Adsorption of major endoglucanases from Thermoascus aurantiacus on cellulosic substrates. World Journal of Microbiology and Biotechnology, 25, 781–788.

    Article  CAS  Google Scholar 

  14. Dong, J., Hong, Y., Shao, Z., & Liu, Z. (2010). Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. Journal of Microbiology, 48, 393–398.

    Article  CAS  Google Scholar 

  15. Shibuya, H., & Kikuchi, T. (2008). Purification and characterization of recombinant endoglucanases from the pine wood nematode Bursaphelenchus xylophilus. Bioscience, Biotechnology, and Biochemistry, 72, 1325–1332.

    Article  CAS  Google Scholar 

  16. Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leeuwen, M. F., & Plinik, W. (1987). Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnology and Bioengineering, 30, 251–257.

    Article  CAS  Google Scholar 

  17. Medve, J., Stahlberg, J., & Tjerneld, F. (1997). Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Applied Biochemistry and Biotechnology, 66, 39–56.

    Article  CAS  Google Scholar 

  18. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  19. Ma, A., Hu, Q., Qu, Y., Bai, Z., Liu, W., & Zhuang, G. (2008). The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I. Enzyme and Microbial Technology, 42, 543–547.

    Article  CAS  Google Scholar 

  20. Yi, Z. L., Pei X. Q., & Wu Z. L. (2011). Introduction of glycine and proline residues onto protein surface increases the thermostability of endoglucanase CelA from Clostridium thermocellum. Bioresource Technology, 102, 3636–3638.

    Article  CAS  Google Scholar 

  21. de Castro A. M,. de Albuquerque de Carvalho M. L., Leite S. G. F., Pereira N. (2009). Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology and Biotechnology, 37, 151-158.

    Google Scholar 

  22. Wang C. Y., Hsieh Y. R., Chan H., Lin H. T., Tzeng W. S., Shyu Y. T. (2009). Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme and Microbial Technology, 44, 373-379.

    Google Scholar 

  23. Qin Y. Q., Wei X. M., Liu X. M., Wang T. H., Qu Y. B. (2008). Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expression and Purification, 58, 162-167.

  24. Lu M., Li D. H., Zhang C. H. (2002). Purification and properties of an endocellulase from the thermophilic fungus Chaetomium thermophile. ATCA Microbiologica Sinia, 42(4), 472-477.

    Google Scholar 

  25. Bothwell M. K., Daughhetee S. D., Chaua G. Y., Wilson D. B., Walker L. P. (1997). Binding capacities for Thermomonospora fusca E3, E4, and E5, the E3 binding domain, and Trichoderma reesei CBHI on Avicel and bacterial microcrystalline cellulose. Bioresource Technology, 60, 169–178.

    Google Scholar 

  26. Krogh K. B. R. M., Kastberg H., Jorgensen C. I., Berlin A., Harris P. V., Olsson L. (2009). Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme and Microbial Technology, 44, 359-367.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31071604), Ministry of Science and Technology, P. R. China (Nos. 2011CB710800), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Xiu Li or Jian-He Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, LH., Li, CX., Sun, J. et al. Thermostable Bacterial Endoglucanases Mined from Swiss-Prot Database. Appl Biochem Biotechnol 165, 1473–1484 (2011). https://doi.org/10.1007/s12010-011-9368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9368-y

Keywords

Navigation