Skip to main content

Advertisement

Log in

Purification and Properties of a New Thermostable Cyclodextrin Glucanotransferase from Bacillus pseudalcaliphilus 8SB

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) from an alkaliphilic halotolerant Bacillus pseudalcaliphilus 8SB was studied in respect to its γ-cyclizing activity. An efficient conversion of a raw corn starch into only two types of cyclodextrins (β- and γ-CD) was achieved by the purified enzyme. Crude enzyme obtained by ultrafiltration was purified up to fivefold by starch adsorption with a recovery of 62% activity. The enzyme was a monomer with a molecular mass 71 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native PAGE. The CGTase exhibited two pH optima, at pH 6.0 and 8.0, and was at most active at 60 °C and pH 8.0. The enzyme retained more than 80% of its initial activity in a wide pH range, from 5.0 to 11.0. The CGTase was strongly inhibited by 15 mM Cu2+, Fe2+, Ag+, and Zn2+, while some metal ions, such as Ca2+, Na+, K+, and Mo7+, exerted a stimulating effect in concentration of 5 mM. The important feature of the studied CGTase was its high thermal stability: the enzyme retained almost 100% of its initial activity after 2 h of heating at 40–60 °C; its half-life was 2 h at 70 °C in the presence of 5 mM Ca2+. The achieved 50.7% conversion of raw corn starch into 81.6% β- and 18.4% γ-CDs after 24 h enzyme reaction at 60 °C and pH 8.0 makes B. pseudalcaliphilus 8SB CGTase industrially important enzyme for cyclodextrin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Li, Z., Wang, M., Wang, F., Gu, Z., Du, G., Wu, J., et al. (2007). Applied Microbiology and Biotechnology, 77, 245–255.

    Article  CAS  Google Scholar 

  2. Terada, Y., Sanbe, H., Takaha, T., Kitahata, S., Koizumi, K., & Okada, S. (2001). Applied and Environmental Microbiology, 67, 1453–1460.

    Article  CAS  Google Scholar 

  3. Martin Del Vale, E. M. (2004). Process Biochemistry, 39, 1033–1046.

    Article  Google Scholar 

  4. Singh, M., Sharma, R., & Banerjee, U. C. (2002). Biotechnology Advances, 20, 341–359.

    Article  CAS  Google Scholar 

  5. Hedges, R. A. (1998). Chemical Reviews, 98, 2035–2044.

    Article  CAS  Google Scholar 

  6. Fente, C. A., Ordaz, J. J., Vazquez, B. I., Franco, C. M., & Cepeda, A. (2001). Applied and Environmental Microbiology, 67, 4858–4862.

    Article  CAS  Google Scholar 

  7. Li, D. Q., & Ma, M. (2000). Clean Products and Processes, 2, 112–116.

    Article  Google Scholar 

  8. Vollu, R. E., Mota, F. F., Gomes, E. A., & Seldin, L. (2008). Biotechnology Letters, 30, 929–935.

    Article  CAS  Google Scholar 

  9. Fujita, Y., Tsubouchi, H., Inagi, Y., Tomita, K., Ozaki, A., & Nakanishi, K. (1990). Journal of Fermentation and Bioengineering, 70, 150–154.

    Article  CAS  Google Scholar 

  10. Takada, M., Nakagawa, Y., & Yamamoto, M. (2003). Journal of Biochemistry, 133, 317–324.

    Article  CAS  Google Scholar 

  11. Hirano, K., Ishihara, T., Ogasawara, S., Maeda, H., Abe, K., Nakajima, T., et al. (2006). Applied Microbiology and Biotechnology, 70, 193–201.

    Article  CAS  Google Scholar 

  12. Atanasova, N., Petrova, P., Ivanova, V., Yankov, D., Vassileva, A., & Tonkova, A. (2008). Applied Biochemistry and Biotechnolology, 149, 155–167.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Kato, T., & Horikoshi, K. (1984). Analytical Chemistry, 56, 1738–1740.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  16. Yim, D. G., Sato, H. H., Park, Y. H., & Park, Y. K. (1997). Journal of Industrial Microbiology and Biotechnology, 18, 402–405.

    Article  CAS  Google Scholar 

  17. Kato, T., & Horikoshi, K. (1986). Journal of the Japanese Society of Starch Science, 34, 137–143.

    Google Scholar 

  18. Wang, F., Du, G. C., Li, Y., & Chen, J. (2004). Food Biotechnology, 18, 251–264.

    Article  CAS  Google Scholar 

  19. Goh, K. M., Mahadi, N. M., Hassan, O., Rahman, R. N., & Illias, R. M. (2007). Journal of Molecular Catalysis B: Enzymatic, 49, 118–126.

    Article  CAS  Google Scholar 

  20. Sato, M. & Yagi, Y. (1991). In Biotechnology of amylodextrin oligosaccharides, ACS Symposium Series 458, American Chemical Society, Washington, DC, Friedman, RB, pp. 125–137.

  21. Shigeharu, M. (1999). Journal of Applied Glycoscience, 46, 87–95.

    Google Scholar 

  22. Qi, Q., Mokhtar, M. N., & Zimmerman, W. (2007). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, 95–99.

    Article  CAS  Google Scholar 

  23. Nakagawa, J., Takada, M., Ogawa, K., Hatada, Y., & Horikoshi, K. (2006). Journal of Biochemistry, 140, 329–336.

    Article  CAS  Google Scholar 

  24. Ong, R. M., Goh, K. M., Mahadi, N. M., Hassan, O., & Illias, R. M. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1705–1714.

    Article  CAS  Google Scholar 

  25. Thiemann, V., Dönges, C., Prowe, S. G., Sterner, R., & Antranikian, G. (2004). Archives of Microbiology, 182, 226–235.

    Article  CAS  Google Scholar 

  26. Alcalde, M., Plou, F. J., Perez-Boada, M., Garcia-Arellano, H., Valdes, I., Mendez, E., et al. (2003). Journal of Molecular Catalysis B: Enzymatic, 26, 57–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Foundation of Bulgarian Ministry of Education and Science (the grant DTK 02/73). The authors are grateful to microbiologist Ivanka Boyadzhieva for her help in the native and SDS-PAGE analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Ivanova Tonkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitayska, T., Petrova, P., Ivanova, V. et al. Purification and Properties of a New Thermostable Cyclodextrin Glucanotransferase from Bacillus pseudalcaliphilus 8SB. Appl Biochem Biotechnol 165, 1285–1295 (2011). https://doi.org/10.1007/s12010-011-9346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9346-4

Keywords

Profiles

  1. Penka Petrova