Applied Biochemistry and Biotechnology

, Volume 165, Issue 5–6, pp 1264–1273 | Cite as

Characterization and Identification of a Chymotryptic Hydrolysate of Alpha-Lactalbumin Stimulating Cholecystokinin Release in STC-1 Cells

  • Lucie Catiau
  • Véronique Delval-Dubois
  • Didier Guillochon
  • Naïma Nedjar-Arroume
Article

Abstract

Alpha-lactalbumin hydrolysate is of significant interest, due to its potential application as a source of bioactive peptides in nutraceutical and pharmaceutical domains. This study was focused on the cholecystokinin (CCK) family compounds which are small peptides involved in the satiety control. The action of chymotryptic hydrolysate of alpha-lactalbumin on cholecystokinin release from intestinal endocrine STC-1 cells was investigated. We demonstrated for the first time that a chymotryptic hydrolysate of alpha-lactalbumin was able to highly stimulate CCK-releasing activity from STC-1 cells. The peptidic hydrolysate was characterized by LC/MS and MS/MS, thus highlighting the presence of 11 fractions containing 21 peptides, each potentially having the desired activity.

Keywords

Alpha-lactalbumin hydrolysate Cholecystokinin Enteroendocrine STC-1 cells Peptides 

References

  1. 1.
    Ritchie, A. H., & Mackie, I. M. (1982). Animal Feed Science and Technology, 7, 125–133.CrossRefGoogle Scholar
  2. 2.
    Terracciano, L., Isoardi, P., Arrigoni, S., Zoja, A., & Martelli, A. (2002). Annals of Allergy, Asthma, and Immunology, 89, 86–90.CrossRefGoogle Scholar
  3. 3.
    Deal, C. L., & Moskowitz, R. W. (1999). Rheumatic Diseases Clinics of North America, 25, 379–395.CrossRefGoogle Scholar
  4. 4.
    Clare, D. A., & Swaisgood, H. E. (2000). Journal of Dairy Science, 83, 1187–1195.CrossRefGoogle Scholar
  5. 5.
    Kodera, T., & Nio, N. (2006). Journal of Food Science, 71, 164–173.CrossRefGoogle Scholar
  6. 6.
    Bougatef, A., Ravallec, R., Nedjar-Arroume, N., Barkia, A., Guillochon, D., & Nasri, M. (2010). Journal of Functional Foods, 2, 10–16.CrossRefGoogle Scholar
  7. 7.
    Cudennec, B., Ravallec-Plé, R., Courois, E., & Fouchereau-Peron, M. (2008). Food Chemistry, 111, 970–975.CrossRefGoogle Scholar
  8. 8.
    Permyakov, E. A., & Berliner, L. J. (2000). FEBS Letters, 473, 269–274.CrossRefGoogle Scholar
  9. 9.
    Chiba, H., & Yoshikawa, M. (1986). Protein Tailoring for Food Medical Uses (pp. 123–153). Marcel Dekker: New York.Google Scholar
  10. 10.
    Pihlanto-Leppala, A., Rokka, T., & Korhonen, H. (1998). International Dairy Journal, 8, 324–331.CrossRefGoogle Scholar
  11. 11.
    Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. V., & Fellenberg, R. (1999). Biochimica et Biophysica Acta, 1426, 439–448.Google Scholar
  12. 12.
    Arora, S., & Anubhuti. (2006). Neuropeptides, 40, 375–401.CrossRefGoogle Scholar
  13. 13.
    Baile, C. A., McLaughlin, C. L., & Della-Fera, M. A. (1986). Physiological Reviews, 66, 172–234.Google Scholar
  14. 14.
    Johnson, L., Bundgaard, J. R., Johnsen, A. H., & Rourke, I. (1999). Journal of Biochemical and Biophysical Acta, 1435, 84–93.CrossRefGoogle Scholar
  15. 15.
    Sufian, M. K., Hira, T., Miyashita, K., Nishi, T., Asano, K., & Hara, H. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1869–1874.CrossRefGoogle Scholar
  16. 16.
    Cordier-Bussat, M., Bernard, C., Haouche, S., Roche, C., Abello, J., Chayvialle, J. A., et al. (1997). Endocrinology, 138, 1137–1144.CrossRefGoogle Scholar
  17. 17.
    Némoz-Gaillard, E., Bernard, C., Abello, J., Cordier-Bussat, M., Chayvialle, J. A., & Cuber, J. C. (1998). Endocrinology, 139, 932–938.CrossRefGoogle Scholar
  18. 18.
    Nakajima, K., Powers, J. C., Ashe, B. M., & Zimmerman, M. (1979). Journal of Biological Chemistry, 254, 4027–4032.Google Scholar
  19. 19.
    Lignot, B., Froidevaux, R., Nedjar-Arroume, N., & Guillochon, D. (1999). Biotechnology and Applied Biochemistry, 30, 201–207.Google Scholar
  20. 20.
    Choisnard, L., Froidevaux, R., Nedjar-Arroume, N., Lignot, B., Vercaigne-Marko, D., & Krier, F. (2002). Biotechnology and Applied Biochemistry, 36, 187–194.CrossRefGoogle Scholar
  21. 21.
    Rindi, G., Grant, S. G., Yiangou, Y., Ghatei, M. A., Bloom, S. R., Bautch, V. L., et al. (1990). American Journal of Pathology, 136, 1349–1363.Google Scholar
  22. 22.
    Zhao, Q. Y., Sannier, F., & Piot, J. M. (1996). Biochimica et Biophysica Acta, 1295, 73–80.CrossRefGoogle Scholar
  23. 23.
    Polverino de Laureto, P., Scaramella, E., Frigo, M., Wondrich, F. G., De Fillipis, V., Zambinin, M., et al. (1999). Protein Science, 8, 2290–2303.CrossRefGoogle Scholar
  24. 24.
    Keil, B. (1987). Protein Sequences & Data Analysis, 1, 13–20.Google Scholar
  25. 25.
    Polverino de Laureto, P., Frare, E., Gottardo, R., & Fontana, A. (2002). Proteins, 49, 385–397.CrossRefGoogle Scholar
  26. 26.
    Kim, H. J., Bae, I. Y., Ahn, C. W., Lee, S., & Lee, H. G. (2007). Peptides, 28, 2098–2103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lucie Catiau
    • 1
  • Véronique Delval-Dubois
    • 1
  • Didier Guillochon
    • 1
  • Naïma Nedjar-Arroume
    • 1
  1. 1.Laboratoire ProBioGEM, Bâtiment Polytech LilleVilleneuve d’AscqFrance

Personalised recommendations