Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 3–4, pp 1068–1074 | Cite as

Enhanced Production of Citric Acid in Yarrowia lipolytica by Triton X-100

  • Maryam Mirbagheri
  • Iraj NahviEmail author
  • Giti Emtiazi
  • Farshad Darvishi
Article

Abstract

Various chemical surfactants could affect permeability of yeast cells. In this study, effects of the surfactant addition upon yeast cells permeability and citric acid (CA) production by Yarrowia lipolytica strains DSM 3286 and M7 were investigated. The addition of Triton X-100 increased 1.4–1.8-fold of the maximum CA quantity achieved for both strains, with final CA concentrations ranging between 75–85 g/l that correspond to CA conversion yields per unit of glucose consumed of ~0.80–0.84 g/g. Scanning electron micrographs of yeast cells showed that the cells treated with Triton X-100 had altered cell structure and were smaller and narrower compared with the non-treated ones. The results showed that Triton X-100 could be used in order to increase the efficiency of CA production by Y. lipolytica strains.

Keywords

Yarrowia lipolytica Citric acid Triton X-100 Surfactant Permeabilization 

References

  1. 1.
    Antonucci, S., Bravi, M., Bubbico, R., Di Michele, A., & Verdone, N. (2001). Enzyme and Microbial Technology, 28, 189–195.CrossRefGoogle Scholar
  2. 2.
    Fickers, P., Benetti, P. H., Wache, Y., Marty, A., Mauersberger, S., et al. (2005). FEMS Yeast Research, 5, 527–543.CrossRefGoogle Scholar
  3. 3.
    Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2002). Applied Microbiology and Biotechnology, 60, 81–87.CrossRefGoogle Scholar
  4. 4.
    Rymowicz, W., Rywinska, A., Zarowska, B., & Juszczyk, P. (2006). Chemical Papers, 60, 391–394.CrossRefGoogle Scholar
  5. 5.
    Darvishi, F., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2009). Journal of Biomedicine and. Biotechnology. doi: 10.1155/2009/562943.
  6. 6.
    Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Applied Biochemistry and Microbiology, 41, 418–425.CrossRefGoogle Scholar
  7. 7.
    Papanikolaou, S., & Aggelis, G. (2009). Lipid Technology, 21, 83–87.CrossRefGoogle Scholar
  8. 8.
    Singh Dhillon, G., Kaur Brar, S., Verma, M., & Tyagi, R. D. (2011). Food and Bioprocess Technology, 4, 505–529.CrossRefGoogle Scholar
  9. 9.
    Rymowicz, W., Fatykhova, A. R., Kamzolova, S. V., Rywińska, A., & Morgunov, I. G. (2010). Applied Microbiology and Biotechnology, 87, 971–979.CrossRefGoogle Scholar
  10. 10.
    Choudary, P. (1984). Analytical Biochemistry, 138, 425–429.CrossRefGoogle Scholar
  11. 11.
    Felix, H. (1982). Analytical Biochemistry, 120, 21l–249l.CrossRefGoogle Scholar
  12. 12.
    Serrano, R., Gancedo, J. M., & Gancedo, C. (1973). European Journal of Biochemistry, 34, 479–483.CrossRefGoogle Scholar
  13. 13.
    Fenton, D. M. (1982). Enzyme and Microbial Technology, 4, 229–232.CrossRefGoogle Scholar
  14. 14.
    Gowda, L. R., Bachhwat, N., & Bhat, S. C. (1991). Enzyme and Microbial Technology, 13, 154–157.CrossRefGoogle Scholar
  15. 15.
    Joshi, M. S., Gowda, L. R., Katw, L. C., & Bhat, S. G. (1989). Enzyme and Microbial Technology, 11, 439–443.CrossRefGoogle Scholar
  16. 16.
    Galabova, D., Tuleva, B., & Spasova, D. (1996). Enzyme and Microbial Technology, 18, 18–22.CrossRefGoogle Scholar
  17. 17.
    Kimura, A., Arima, K., & Murata, K. (1981). Agricultural and Biological Chemistry, 45, 2627–2629.CrossRefGoogle Scholar
  18. 18.
    Lopandic, K., Zelger, S., Banszky, L. K., Eliskases-Lechner, F., & Prillinger, H. (2006). Food Microbiology, 23, 341–350.CrossRefGoogle Scholar
  19. 19.
    Mafakher, L., Mirbagheri, M., Darvishi, F., Nahvi, I., Zarkesh-Esfahani, H., et al. (2010). New Biotechnology, 27, 337–340.CrossRefGoogle Scholar
  20. 20.
    Papanikolaou, S., Galiotou-Panayotou, M., Chevalot, I., Komaitis, M., Marc, I., et al. (2006). Current Microbiology, 52, 134–142.CrossRefGoogle Scholar
  21. 21.
    Nutan, D., Mahadik, K., Bastawde, B., Ulka, S., Puntambekar, J., et al. (2004). Process Biochemistry, 39, 2031–2034.CrossRefGoogle Scholar
  22. 22.
    Moeller, L., Grünberg, M., Zehnsdorf, A., Strehlitz, B., & Bley, T. (2010). Engineering in Life Sciences, 10, 311–320.CrossRefGoogle Scholar
  23. 23.
    Rane, K. D., & Sims, K. A. (1993). Enzyme and Microbial Technology, 15, 646–651.CrossRefGoogle Scholar
  24. 24.
    Makri, A., Fakas, S., & Aggelis, G. (2010). Bioresource Technology, 101, 2351–2358.CrossRefGoogle Scholar
  25. 25.
    Papanikolaou, S., Afroditi, C., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., et al. (2009). European Journal of Lipid Science and Technology, 111, 1221–1232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maryam Mirbagheri
    • 1
  • Iraj Nahvi
    • 1
    Email author
  • Giti Emtiazi
    • 1
  • Farshad Darvishi
    • 2
  1. 1.Department of Biology, Faculty of ScienceUniversity of IsfahanIsfahanIran
  2. 2.Department of Microbiology, Faculty of ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations