Skip to main content

Advertisement

Log in

Anticoagulant, Antiherpetic and Antibacterial Activities of Sulphated Polysaccharide from Indian Medicinal Plant Tridax procumbens L. (Asteraceae)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The sulphated polysaccharide from the widespread Tridax procumbens plant was studied for the anticoagulant, antiherpetic and antibacterial activity. The anticoagulant activity was determined by the activated partial thromboplastin time assay. The sulphated polysaccharide from T. procumbens represented potent anticoagulant reaching the efficacy to heparin and chondroitin sulphate. Moreover, the sulphated polysaccharide extracted from T. procumbens was found non-toxic on Vero cell lines up to the concentration of 200 μg/ml. Sulphated polysaccharide exhibited detectable antiviral effect towards HSV-1 with IC50 value 100–150 μg/ml. Furthermore, sulphated polysaccharide from T. procumbens was highly inhibitory against the bacterial strains Vibrio alginolyticus and Vibrio harveyi isolated from oil sardine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehta, S., Rai, P. K., Rai, D. K., Rai, N. K., Rai, A. K., Bicanic, D., Sharma, B., & Watal, G. (2010). Food Biophysics. doi:10.1007/s11483-010-9158-z.

  2. Rai, P. K., Jaiswal, D., Rai, D. K., Sharma, B., & Watal, G. (2010). Indian Journal of Clinical Biochemistry, 25, 175–181.

    Article  Google Scholar 

  3. Rai, P. K., Jaiswal, D., Rai, D. K., Sharma, B., & Watal, G. (2010). Journal of Food Biochemistry, 34, 78–92.

    Article  CAS  Google Scholar 

  4. Rai, D. K., Sharma, R. K., Rai, P. K., Watal, G., & Sharma, B. (2011). Cellular and Molecular Biology, 57, 135–142.

    CAS  Google Scholar 

  5. Singh, S. K., Rai, P. K., Jaiswal, D., Rai, D. K., Sharma, B., & Watal, G. (2008). Journal of Ecophysiology and Occupational Health, 8, 195–199.

    CAS  Google Scholar 

  6. Rai, P. K., Jaiswal, D., Rai, D. K., Sharma, B., & Watal, G. (2008). Indian Journal of Clinical Biochemistry, 23, 387–390.

    Article  Google Scholar 

  7. Rai, P. K., Rai, D. K., Mehta, S., Gupta, R., Sharma, B., & Watal, G. (2011). Cellular and Molecular Biology, 57, 31–39.

    CAS  Google Scholar 

  8. Sharma, R. K., Chatterji, S., Rai, D. K., Mehta, S., Rai, P. K., Singh, R. K., et al. (2009). Journal of Medicinal Plants Research, 3, 944–948.

    CAS  Google Scholar 

  9. Mishra, A. K., Kumar, S., Bhargava, A., Sharma, B., & Pandey, A. K. (2011). Cellular and Molecular Biology, 57, 16–25.

    CAS  Google Scholar 

  10. Mishra, A. K., Mishra, A., Kehri, H. K., Sharma, B., & Pandey, A. K. (2009). Annals of Clinical Microbiology and Antimicrobials, 8, 1–21.

    Article  Google Scholar 

  11. Toida, T., Amornrut, C., & Linhardt, R. J. (2003). Trends in Glycoscience and Glycotechnology, 81, 29–46.

    Article  Google Scholar 

  12. McLellan, D. S., & Jurd, K. M. (1992). Blood Coagulation and Fibrinolysis, 3, 9–77.

    Google Scholar 

  13. Cassaro, C. M., & Dietrich, C. P. (1977). Journal of Biological Chemistry, 252, 2254–2261.

    CAS  Google Scholar 

  14. Saraf, S., & Dixit, V. K. (1991). Fitoterapia, 62, 534–546.

    Google Scholar 

  15. Ali, M., Ravinder, E., & Ramachandran, R. A. (2001). Fitoterapia, 72, 313–315.

    Article  CAS  Google Scholar 

  16. Ravi kumar, V., Shivashangari, K. S., & Devaki, T. (2005). Molecular and Cellular Biology, 269, 131–136.

    CAS  Google Scholar 

  17. Durgacharan, A., Bhagwat, S. G., & Killedar, R. S. A. (2008). International Journal of Green Pharmacy, 2, 26–128.

    Article  Google Scholar 

  18. Holick, M. F., Judikiewicz, A., Walworth, N., & Wang, M. Y. (1985). Biotechnology of marine polysaccharides (pp. 389–397). New York: Hemisphere.

    Google Scholar 

  19. Dietrich, C. P., Paivao, J. F., Castro, R. A., Chavante, S. F., Jeske, W., Fareed, J., et al. (1999). Biochimica et Biophyisca Acta, 1428, 273–283.

    CAS  Google Scholar 

  20. Santos, J. C., Mesquita, J. M. F., Berlmiro, C. L. R., Da Silveira, C. B. M., Viskov, C., Mourier, P. A., et al. (2007). Thrombosis Research, 121, 213–223.

    Article  CAS  Google Scholar 

  21. Dodgson, K. S. (1960). Biochemical Journal, 78, 312–319.

    Google Scholar 

  22. Garnjanagoonchorn, W., Wongekalak, L., & Engkagul, A. (2007). Chemical Engineering and Processing, 46, 465–471.

    Article  CAS  Google Scholar 

  23. Jeske, W. P., McDonald, M. K., Hoppensteadt, D., Bau, E. C., Mendes, A., Dietrich, C. P., et al. (2007). Clinical and Applied Thrombosis/Hemostasis, 13, 137–145.

    Article  CAS  Google Scholar 

  24. Hu, J. M., & Hsiung, G. D. (1989). Antiviral Research, 11, 217–232.

    Article  CAS  Google Scholar 

  25. Elizabeth, K. M. (2005). Indian Journal of Clinical Biochemistry, 20, 150–153.

    Article  Google Scholar 

  26. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1996). American Journal of Clinical Pathology, 45, 493–496.

    Google Scholar 

  27. Athukorala, Y., Jung, W. K., Vasanthan, T., & Jeon, Y. J. (2006). Carbohydrate Polymers, 66, 184–191.

    Article  CAS  Google Scholar 

  28. Yoon, S. J., Pyun, Y. R., Hwang, J. K., & Paulo, A. S. M. (2007). Carbohydrate Research, 342, 2326–2330.

    Article  CAS  Google Scholar 

  29. Shanmugam, S., & Mody, K. H. (2000). Current Science, 79, 1672–1683.

    CAS  Google Scholar 

  30. Silva, T. M. A., Alves, L. G., De Queiroz, K. C. S., Santos, M. G. L., Marques, C. T., Chavante, S. F., et al. (2005). Brazilian Journal of Medical and Biological Research, 38, 523–533.

    CAS  Google Scholar 

  31. Badami, S., Vijayan, P., Mathew, N., Chandrashekhar, R., Godavarthi, A., Dhanaraj, S. A., et al. (2003). Indian Journal of Pharmacology, 35, 250–251.

    Google Scholar 

  32. Huheihel, M., Ishanu, V., Tal, J., & Arad, S. (2002). Journal of Biochemical and Biophysical Methods, 50, 189–200.

    Article  CAS  Google Scholar 

  33. Akaayli, T., Timur, G., Aydemir, B., Kiziler, A. R., Coskun, O., Albayrak, G., et al. (2008). Israeli Journal of Aquaculture-Bamidgeh, 60, 89–94.

    Google Scholar 

  34. Tendencia, E. A. (2002). Aquaculture Research, 33, 455–458.

    Article  Google Scholar 

  35. Gauger, E., Smolowitz, R., Uhlinger, K., Casey, J., & Gómez-Chiarri, M. (2006). Aquaculture, 26, 10–20.

    Article  Google Scholar 

  36. Alcaide, E., Gil-Saz, C., Sanjuán, E., Esteve, D., Amaro, C., & Silveira, L. (2001). Journal of Fish Disease, 24, 311–313.

    Article  Google Scholar 

  37. Austin, B., & Austin, D. (2007). Bacterial fish pathogens: Diseases of farmed and wild fish (4th ed., p. 594). Springer: Chichester.

    Google Scholar 

  38. Levine, W. C., & Griffin, P. M. (1993). Journal of Infectious Diseases, 167, 479–483.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Ramasamy, Dean, School of Bioengineering, SRM University, for his support throughout the project. We would like to extend our acknowledgment to the management of SRM University for providing the facilities.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Nazeer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naqash, S.Y., Nazeer, R.A. Anticoagulant, Antiherpetic and Antibacterial Activities of Sulphated Polysaccharide from Indian Medicinal Plant Tridax procumbens L. (Asteraceae). Appl Biochem Biotechnol 165, 902–912 (2011). https://doi.org/10.1007/s12010-011-9307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9307-y

Keywords

Navigation