Skip to main content

Advertisement

Log in

Large-Scale Production of the Immunomodulator c-di-GMP from GMP and ATP by an Enzymatic Cascade

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(3′–5′)-Cyclic diguanylate (c-di-GMP) is a bacterial second messenger with immunomodulatory activities in mice suggesting potential applications as a vaccine adjuvant and as a therapeutic agent. Clinical studies in larger animals or humans will require larger doses that are difficult and expensive to generate by currently available chemical or enzymatic synthesis and purification methods. Here we report the production of c-di-GMP at the multi-gram scale from the economical precursors guanosine monophosphate (GMP) and adenosine triphosphate by a “one-pot” three enzyme cascade consisting of GMP kinase, nucleoside diphosphate kinase, and a mutated form of diguanylate cyclase engineered to lack product inhibition. The c-di-GMP was purified to apparent homogeneity by a combination of anion exchange chromatography and solvent precipitation and was characterized by reversed phase high performance liquid chormatography and mass spectrometry, nuclear magnetic resonance spectroscopy, and further compositional analyses. The immunomodulatory activity of the c-di-GMP preparation was confirmed by its potentiating effect on the lipopolysaccharide-induced interleukin 1β, tumor necrosis factor α, and interleukin 6 messenger RNA expression in J774A.1 mouse macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ross, P., Aloni, Y., Weinhouse, C., Michaeli, D., Weinberger-Ohana, P., Meyer, R., et al. (1985). An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Letters, 186, 191–196.

    Article  CAS  Google Scholar 

  2. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., et al. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325, 279–281.

    Article  CAS  Google Scholar 

  3. Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H., et al. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science, 321, 411–413.

    Article  CAS  Google Scholar 

  4. Smith, K. D., Lipchock, S. V., Ames, T. D., Wang, J., Breaker, R. R., & Strobel, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. Nature Structural and Molecular Biology, 16, 1218–1223.

    Article  CAS  Google Scholar 

  5. Kulshina, N., Baird, N. J., & Ferré-D’Amaré, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural and Molecular Biology, 16, 1212–1217.

    Article  CAS  Google Scholar 

  6. Chang, A. L., Tuckerman, J. R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., et al. (2001). Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry, 40, 3420–3426.

    Article  CAS  Google Scholar 

  7. Yan, H., & Chen, W. (2010). 3′,5′-Cyclic diguanylic acid: A small nucleotide that makes big impacts. Chemical Society Reviews, 39, 2914–2924.

    Article  CAS  Google Scholar 

  8. Römling, U., & Amikam, D. (2006). Cyclic di-GMP as a second messenger. Current Opinion in Microbiology, 9, 218–228.

    Article  Google Scholar 

  9. Jenal, U., & Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annual Review of Genetics, 40, 385–407.

    Article  CAS  Google Scholar 

  10. Cotter, P. A., & Stibitz, S. (2007). c-di-GMP-mediated regulation of virulence and biofilm formation. Current Opinion in Microbiology, 10, 17–23.

    Article  CAS  Google Scholar 

  11. Tamayo, R., Pratt, J. T., & Camilli, A. (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Review of Microbiology, 61, 131–148.

    Article  CAS  Google Scholar 

  12. Wolfe, A. J., & Visick, K. L. (2008). Get the message out: Cyclic-Di-GMP regulates multiple levels of flagellum-based motility. Journal of Bacteriology, 190, 463–475.

    Article  CAS  Google Scholar 

  13. Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nature Reviews Microbiology, 7, 263–273.

    Article  CAS  Google Scholar 

  14. Brouillette, E., Hyodo, M., Hayakawa, Y., Karaolis, D. K., & Malouin, F. (2005). 3′,5′-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrobial Agents and Chemotherapy, 49, 3109–3113.

    Article  CAS  Google Scholar 

  15. Karaolis, D. K., Newstead, M. W., Zeng, X., Hyodo, M., Hayakawa, Y., Bhan, U., et al. (2007). Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infection and Immunity, 75, 4942–4950.

    Article  CAS  Google Scholar 

  16. Karaolis, D. K., Means, T. K., Yang, D., Takahashi, M., Yoshimura, T., Muraille, E., et al. (2007). Bacterial c-di-GMP is an immunostimulatory molecule. Journal of Immunology, 178, 2171–2181.

    CAS  Google Scholar 

  17. McWhirter, S. M., Barbalat, R., Monroe, K. M., Fontana, M. F., Hyodo, M., Joncker, N. T., et al. (2009). A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. The Journal of Experimental Medicine, 206, 1899–1911.

    Article  CAS  Google Scholar 

  18. Ebensen, T., Schulze, K., Riese, P., Link, C., Morr, M., & Guzmán, C. A. (2007). The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine, 25, 1464–1469.

    Article  CAS  Google Scholar 

  19. Ebensen, T., Schulze, K., Riese, P., Morr, M., & Guzmán, C. A. (2007). The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. Clinical and Vaccine Immunology, 14, 952–958.

    Article  CAS  Google Scholar 

  20. Ogunniyi, A. D., Paton, J. C., Kirby, A. C., McCullers, J. A., Cook, J., Hyodo, M., et al. (2008). c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine, 26, 4676–4685.

    Article  CAS  Google Scholar 

  21. Yan, H., KuoLee, R., Tram, K., Qiu, H., Zhang, J., Patel, G. B., et al. (2009). 3′,5′-Cyclic diguanylic acid elicits mucosal immunity against bacterial infection. Biochemical and Biophysical Research Communications, 387, 581–584.

    Article  CAS  Google Scholar 

  22. Hu, D. L., Narita, K., Hyodo, M., Hayakawa, Y., Nakane, A., & Karaolis, D. K. (2009). c-di-GMP as a vaccine adjuvant enhances protection against systemic methicillin-resistant Staphylococcus aureus (MRSA) infection. Vaccine, 27, 4867–4873.

    Article  CAS  Google Scholar 

  23. Chen, W., Kuolee, R., & Yan, H. (2010). The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine, 28, 3080–3085.

    Article  CAS  Google Scholar 

  24. Steinberger, O., Lapidot, Z., Ben-Ishai, Z., & Amikam, D. (1999). Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′-cyclic diguanylic acid. FEBS Letters, 444, 125–129.

    Article  CAS  Google Scholar 

  25. Karaolis, D. K., Cheng, K., Lipsky, M., Elnabawi, A., Catalano, J., Hyodo, M., et al. (2005). 3′,5′-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochemical and Biophysical Research Communications, 329, 40–45.

    Article  CAS  Google Scholar 

  26. Karaolis, D. K., Rashid, M. H., Chythanya, R., Luo, W., Hyodo, M., & Hayakawa, Y. (2005). c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell–cell interactions and biofilm formation. Antimicrobial Agents and Chemotherapy, 49, 1029–1038.

    Article  CAS  Google Scholar 

  27. Ishihara, Y., Hyodo, M., Hayakawa, Y., Kamegaya, T., Yamada, K., Okamoto, A., et al. (2009). Effect of cyclic bis(3′-5′)diguanylic acid and its analogs on bacterial biofilm formation. FEMS Microbiology Letters, 301, 193–200.

    Article  CAS  Google Scholar 

  28. Yan, W., Qu, T., Zhao, H., Su, L., Yu, Q., Gao, J., et al. (2010). The effect of c-di-GMP (3′-5′-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans. Microbiology Research, 165, 87–96.

    Article  CAS  Google Scholar 

  29. Ross, P., Mayer, R., Weinhouse, H., Amikam, D., Huggirat, Y., Benziman, M., et al. (1990). The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. Journal of Biological Chemistry, 265, 18933–18943.

    CAS  Google Scholar 

  30. Kawai, R., Nagata, R., Hirata, A., & Hayakawa, Y. (2003). A new synthetic approach to cyclic bis(3′→5′)diguanylic acid. Nucleic Acids Research. Supplement (2001), 3, 103–104.

    CAS  Google Scholar 

  31. Hayakawa, Y., Nagata, R., Hirata, A., Hyodo, M., & Kawai, R. (2003). A facile synthesis of cyclic bis(3′–5′)diguanylic acid. Tetrahedron, 59, 6465–6471.

    Article  CAS  Google Scholar 

  32. Hyodo, M., & Hayakawa, Y. (2004). An improved method for synthesizing cyclic bis(3′–5′)diguanylic acid (c-di-GMP). Bulletin of the Chemical Society of Japan, 77, 2089–2093.

    Article  CAS  Google Scholar 

  33. Zhang, Z., Gaffney, B. L., & Jones, R. A. (2004). c-di-GMP displays a monovalent metal ion-dependent polymorphism. Journal of the American Chemical Society, 126, 16700–16701.

    Article  CAS  Google Scholar 

  34. Yan, H., & Humes, E. (2006). Convenient synthesis of 3′,5′-cyclic diguanylic acid (cdiGMP). Nucleic Acids Symposium Series (Oxford), 50, 5–6.

    Article  Google Scholar 

  35. Kiburu, I., Shurer, A., Yan, L., & Sintim, H. O. (2008). A simple solid-phase synthesis of the ubiquitous bacterial signaling molecule, c-di-GMP and analogues. Molecular BioSystems, 4, 518–520.

    Article  CAS  Google Scholar 

  36. Gaffney, B. L., Veliath, E., Zhao, J., & Jones, R. A. (2010). One-flask syntheses of c-di-GMP and the [Rp, Rp] and [Rp, Sp] thiophosphate analogues. Organic Letters, 12, 3269–3271.

    Article  CAS  Google Scholar 

  37. Tal, R., Wong, H. C., Calhoon, R., Gelfand, D., Fear, A. L., Volman, G., et al. (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 180, 4416–4425.

    CAS  Google Scholar 

  38. Römling, U., Gomelsky, M., & Galperin, M. Y. (2005). C-di-GMP: The dawning of a novel bacterial signalling system. Molecular Microbiology, 57, 629–639.

    Article  Google Scholar 

  39. Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., & Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. Journal of Bacteriology, 187, 1792–1798.

    Article  CAS  Google Scholar 

  40. Christen, M., Christen, B., Folcher, M., Schauerte, A., & Jenal, U. (2005). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry, 280, 30829–30837.

    Article  CAS  Google Scholar 

  41. Kazmierczak, B. I., Lebron, M. B., & Murray, T. S. (2006). Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology, 60, 1026–1043.

    Article  CAS  Google Scholar 

  42. Tamayo, R., Tischler, A. D., & Camilli, A. (2005). The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. Journal of Biological Chemistry, 280, 33324–33330.

    Article  CAS  Google Scholar 

  43. Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y., & Lory, S. (2007). The second messenger bis-(3′–5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Molecular Microbiology, 65, 876–895.

    Article  CAS  Google Scholar 

  44. Hickman, J. W., & Harwood, C. S. (2008). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Molecular Microbiology, 69, 376–389.

    Article  CAS  Google Scholar 

  45. Rao, F., Pasunooti, S., Ng, Y., Zhuo, W., Lim, L., Liu, A. W., et al. (2009). Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. Analytical Biochemistry, 389, 138–142.

    Article  CAS  Google Scholar 

  46. Zähringer, F., Massa, C., & Schirmer, T. (2011). Efficient enzymatic production of the bacterial second messenger c-di-GMP by the diguanylate cyclase YdeH from E. coli. Applied Biochemistry. Biotechnology, 163(1), 71–79.

    Google Scholar 

  47. Sambrook, J., & Russell, D. W. (2001). Molecular cloning. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  48. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  49. Höcherl, K., Dreher, F., Vitzthum, H., Köhler, J., & Kurtz, A. (2002). Cyclosporine A suppresses cyclooxygenase-2 expression in the rat kidney. Journal of the American Society of Nephrology, 13, 2427–2436.

    Article  Google Scholar 

  50. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P., et al. (2006). Allosteric control of cyclic di-GMP signaling. Journal of Biological Chemistry, 281, 32015–32024.

    Article  CAS  Google Scholar 

  51. Kammann, M., Laufs, J., Schell, J., & Gronenborn, B. (1989). Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Research, 17, 5404.

    Article  CAS  Google Scholar 

  52. Landt, O., Grunert, H. P., & Hahn, U. (1990). A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene, 96, 125–128.

    Article  CAS  Google Scholar 

  53. Sarkar, G., & Sommer, S. S. (1992). Double-stranded DNA segments can efficiently prime the amplification of human genomic DNA. Nucleic Acids Research, 20, 4937–4938.

    Article  CAS  Google Scholar 

  54. Anadón, A., & Reeve-Johnson, L. (1999). Macrolide antibiotics, drug interactions and microsomal enzymes: Implications for veterinary medicine. Research in Veterinary Science, 66, 197–203.

    Article  Google Scholar 

  55. Amiot, N., Heintz, K., & Giese, B. (2006). New approach for the synthesis of c-di-GMP and its analogues. Synthesis, 24, 4230–4236.

    Google Scholar 

  56. Alberty, R. A., Smith, R. M., & Bock, R. M. (1951). The apparent ionization constants of the adenosinephosphates and related compounds. Journal of Biological Chemistry, 193, 425–434.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicole Engelmann, Karl-Heinz Grimm, Susanne Schmalz, and Heinz-Jörg Wennesheimer for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ilg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spehr, V., Warrass, R., Höcherl, K. et al. Large-Scale Production of the Immunomodulator c-di-GMP from GMP and ATP by an Enzymatic Cascade. Appl Biochem Biotechnol 165, 761–775 (2011). https://doi.org/10.1007/s12010-011-9294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9294-z

Keywords

Navigation