Skip to main content
Log in

Carbohydrate Metabolite Pathways and Antibiotic Production Variations of a Novel Streptomyces sp. M3004 Depending on the Concentrations of Carbon Sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To determine the variations of growth, some key enzyme activities such as glucose kinase (GK), glucose-6-phosphate dehydrogenase (G6PDH), α-ketoglutarate dehydrogenase (KGDH), and isocitrate lyase (ICL) besides metabolite levels of pyruvate and antibiotic production of newly isolated Streptomyces sp. M3004 were grown in culture media which contain 10–20 g/l concentration with either glucose or glycerol as carbon source. Biomass and intracellular glucose and glycerol levels of Streptomyces sp. M3004 showed positive correlation with the concentration of these carbon sources, and these levels were higher in glucose compared with the glycerol-supplemented mediums. GK, G6PDH, and KGDH activities showed marked correlation with the concentration of both glucose and glycerol, and the activity levels were 4.14-, 1.47-, and 1.27-fold higher in glucose than glycerol. A key enzyme of the glyoxalate cycle, ICL activities decreased with increasing glucose concentrations from 10 to 20 g/l, but increased up to 15 g/l of glycerol. The positive correlations were also determined between intracellular glucose and glycerol levels besides pyruvate and protein variations with respect to concentrations of the carbon sources. Antibacterial activities of Streptomyces sp. M3004 reached maximum on the stationary phase, while it did not change significantly with respect to glucose and glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuster, E., & Williams, S. (1964). Nature, 202, 928–929.

    Article  Google Scholar 

  2. Lechevalier, H. A., & Lechevalier, M. P. (1970). A critical evaluation of the genera of aerobic actinomycetes. In H. Prauser (Ed.), The actinomycetes (pp. 393–405). Jena: Gustav Fischer Verlag.

    Google Scholar 

  3. Wipat, A., Wellington, E., & Saunders, V. (1991). Applied and Environmental Microbiology, 57, 3322–3330.

    CAS  Google Scholar 

  4. Mehling, A., Wehmeir, F., & Piepersberg, W. (1995). Microbiology, 141, 2139–2147.

    Article  CAS  Google Scholar 

  5. Strohl, W. R. (1997). Biotechnology of antibiotics (p. 842). New York: Marcel Dekker, Inc.

    Google Scholar 

  6. Marshall, C. G., & Wright, G. D. (1996). Biochemical and Biophysical Research Communications, 219, 580–583.

    Article  CAS  Google Scholar 

  7. Demain, A. L., & Martin, J. F. (1980). Microbiological Reviews, 44, 230.

    Google Scholar 

  8. Postma, P. W., Lengeler, J. W., & Jacobson, G. R. (1993). FEMS Microbiological Reviews, 57, 543–594.

    CAS  Google Scholar 

  9. Poolman, B. (1993). FEMS Microbiological Reviews, 12, 125–147.

    Article  CAS  Google Scholar 

  10. Fath, M. J., & Kolter, R. (1993). FEMS Microbiological Reviews, 57, 995–1017.

    CAS  Google Scholar 

  11. Kashket, E. R., & Wilson, T. H. (1973). The Proceedings of the National Academy of Sciences of the United States of America (Online), 70, 2866–2869.

    Article  CAS  Google Scholar 

  12. Poolman, B., Knol, J., van der Does, C., Henderson, P. J., Liang, W. J., Leblanc, G., et al. (1996). Molecular Microbiology, 19, 911–922.

    Article  CAS  Google Scholar 

  13. Eikmanns, B. J. (1992). Journal of Bacteriology, 174, 6076–6086.

    CAS  Google Scholar 

  14. Pronk, J. T., Steensma, H. Y., & van Dijken, J. P. (1996). Yeast, 1, 1607–1633.

    Article  Google Scholar 

  15. Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.

    Article  CAS  Google Scholar 

  16. Sembiring, L., Ward, A. C., & Goodfello, M. (2000). Antonie van Leeuwenhoek, 78, 353–366.

    Article  CAS  Google Scholar 

  17. Phylıp, F. J. (1993). Phylogeny inference package, version 3.5c. Seattle: Department of Genetics, University of Washington.

    Google Scholar 

  18. Işık, K., Ayar Kayalı, H., Şahin, N., Öztürk Gündoğdu, E., & Tarhan, L. (2007). Process Biochemistry, 42, 235–243.

    Article  Google Scholar 

  19. Lechevalier, M. P., Prauser, H., Labeda, D. P., & Ruan, J. S. (1986). International Journal of Systematic Bacteriology (JournalSeek), 36, 29–37.

    Article  Google Scholar 

  20. Babul, J., Clifton, D., Kretschmer, M., & Fraenkel, D. G. (1993). Biochemistry, 32, 4685–4692.

    Article  CAS  Google Scholar 

  21. Friedeman, E., & Haugen, G. E. (1943). The Journal of Biological Chemistry, 147, 415–442.

    Google Scholar 

  22. Imriskova, I., Langley, E., Arregúın-Espinoza, R., Aguilar, G., Pardo, J. P., & Sanchez, S. (2001). Archives of Biochemistry and Biophysics, 394, 137–144.

    Article  CAS  Google Scholar 

  23. Bergmeyer, H. U. (1984). In H. U. Bergmeyer, J. Bergmeyer, & M. Grasl (Eds.), Methods of enzymatic analysis 2 (3rd ed., pp. 222–223). Weinheim: Verlag Chemie.

    Google Scholar 

  24. Meixner-Monori, B., Kubicek, C. P., Habison, A., Kubicek-Pranz, E. M., & Rohr, M. (1985). The Journal of Bacteriology, 161, 265–271.

    CAS  Google Scholar 

  25. Dixon, G. H., & Kornberg, H. L. (1959). Biochemical Journal, 72, 3.

    Google Scholar 

  26. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. NCCLS (National Committee for Clinical Labrotary Standards). (1994). Performance standards for antimicrobial disk susceptibility tests. Fifth International Supplement M2-A5. Villanova: NCCLS.

  28. Srinivasulu, B., Prakasham, R. S., Annapurna, J., Srinivas, S., Ellaiah, P., & Ramakrishna, S. V. (2002). Process Biochemistry, 38, 593–598.

    Article  CAS  Google Scholar 

  29. Vilches, C., Méndez, C., Hardisson, C., & Salas, J. A. (1990). Journal of General Microbiology, 136, 1447–1454.

    CAS  Google Scholar 

  30. Jonsbu, E., McIntyre, M., & Nielsen, J. (2002). Journal of Biotechnology, 95, 133–144.

    Article  CAS  Google Scholar 

  31. He, J.-Y., Vining, L. C., White, R. L., Horton, K. L., & Doull, J. L. (1995). Canadian Journal of Microbiology, 41, 186–193.

    Article  CAS  Google Scholar 

  32. Kojima, I., Cheng, Y. R., Mohan, V., & Demain, A. L. (1995). Journal of Industrial Microbiology, 14, 346–439.

    Article  Google Scholar 

  33. Schlösser, A., Kampers, T., & Schrempf, H. (1997). Journal of Bacteriology, 179, 2092–2095.

    Google Scholar 

  34. Saizer, M. H., Chauvaux, S., Georgy, M. C., Deutscher, J., Paulsen, T., & Reizer, J. (1996). Microbiology, 142, 217–230.

    Article  Google Scholar 

  35. Mori, M., & Shiio, I. (1987). Agricultural Biology and Chemistry, 51, 2671–2678.

    Article  CAS  Google Scholar 

  36. Ruklisha, M., & Ionina, R. (2000). Process Biochemistry, 35, 841–848.

    Article  CAS  Google Scholar 

  37. Ayar Kayali, H., & Tarhan, L. (2006). Enzyme and Microbial Technology, 38, 727–734.

    Article  CAS  Google Scholar 

  38. Obanye, A. I. C., Hobbs, G., Gardner, D. C. J., & Oliver, S. G. (1996). Microbiology, 142, 133–137.

    Article  CAS  Google Scholar 

  39. Bolaños, J. P., Delgado-Esteban, M., Herrero-Mendez, A., Fernandez-Fernandez, S., & Almeida, A. (2008). Biochimica et Biophysica Acta, 1777, 789–793.

    Article  Google Scholar 

  40. Zamboni, N., Maaheimo, H., Szyperski, T., Hohmann, H. P., & Sauer, U. (2004). Metabolic Engineering, 6, 277–284.

    Article  CAS  Google Scholar 

  41. Samokhvalov, V., Ignatov, V., & Kondrashova, M. (2004). Biochimie, 86, 39–46.

    Article  CAS  Google Scholar 

  42. Angell, S., Schwarz, E., & Bibb, M. J. (1992). Molecular Microbiology, 6, 2833–2844.

    Article  CAS  Google Scholar 

  43. Kreig, N. R., & Holt, J. G. (1989). Bergey’s manual of determinative bacteriology (Vol. 4, pp. 2451–2458). Baltimore: Williams and Wilkins.

    Google Scholar 

  44. Guanghai, Y., Xiaoqiang, J., Jianping, W., Guoying, W., & Yunlin, C. (2011). World Journal of Microbiology & Biotechnology. doi:10.1007/s11274-010-0644-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leman Tarhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayali, H.A., Tarhan, L., Sazak, A. et al. Carbohydrate Metabolite Pathways and Antibiotic Production Variations of a Novel Streptomyces sp. M3004 Depending on the Concentrations of Carbon Sources. Appl Biochem Biotechnol 165, 369–381 (2011). https://doi.org/10.1007/s12010-011-9256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9256-5

Keywords

Navigation