Skip to main content
Log in

Chemical Modification and Structural Analysis of Protein Isolates to Produce Hydrogel using Whitemouth Croaker (Micropogonias furnieri) Wastes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recovery and alteration of fish protein from wastes and its use has been regarded as a promising alternative to develop useful products once polymer gels have a high capacity of water uptake. This study aims to produce hydrogel, a super absorbent biopolymer from modified fish protein, in order to evaluate the protein structure. In the modified proteins, analyses of the extent of modification of the lysine residues, electrophoresis, and electrometric titration were performed. In the hydrogels were realized assays of swelling water. The proteins with more modifications were shown as 63.5% and 75.9% of lysine residues, from fish protein isolate obtained with alkaline and acid solubilization, respectively. The modified protein in that same rate presented 332.0 and 311.4 carboxyl groups. Accordingly, the hydrogel produced from alkaline and acid isolates reached a maximum water uptake in 24 h of 79.42 and 103.25 gwater/gdry gel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reguly, J. C. (1983). Biotecnologia dos processos fermentativos. Pelotas: Ed Universitária.

    Google Scholar 

  2. Cheng, G. X., Liu, J., Zhao, R. Z., & Yao, K. D. (1998). Journal of Applied Polymer Science, 67, 983–988.

    Article  CAS  Google Scholar 

  3. Kristinsson, H. G., & Rasco, B. A. (2000). Journal of Agricultural and Food Chemistry, 48, 657–666.

    Article  CAS  Google Scholar 

  4. Slizyte, R., Dauksas, E., Falch, E., Storro, I., & Rustad, T. (2005). Process Biochemistry, 40, 2021–2033.

    Article  CAS  Google Scholar 

  5. Bechtel, P. J., Sathivel, S., & Oliveira, A. C. M. (2005). Alkali extracted protein fractions from salmon byproducts. Annual IFT Meeting 2005 New Orleans, Louisiana.

  6. Batista, I., Pires, C., Nelhas, R., & Godinho, V. (2006). Acid and alkaline-aided protein recovery from Cape Hake by-products. Wageningen: Wageningen Academic Serial.

    Google Scholar 

  7. Chen, Y. C., & Jaczynski, J. (2007). Journal of Agricultural and Food Chemistry, 55, 9079–9088.

    Article  CAS  Google Scholar 

  8. Røkaeus, S., & Undeland, I. (2007). Production of protein isolates from whole and gutted herring (Clupea harengus) using a pH shift method. Lisboa: WEFTA.

    Google Scholar 

  9. Guerard, F., Guimas, L., & Binet, A. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19–20, 489–498.

    Article  Google Scholar 

  10. Coello, N., Montiel, E., Concepcion, M., & Christen, P. (2002). Bioresource Technology, 85, 207–211.

    Article  CAS  Google Scholar 

  11. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Bioresource Technology, 87, 167–198.

    Article  CAS  Google Scholar 

  12. Kato, S., Kunisawa, N., Kojima, T., & Murakami, S. (2004). Journal of Chemical Engineering Japan, 37, 863–870.

    Article  CAS  Google Scholar 

  13. Gebauer, R., & Eikebrokk, B. (2005). Bioresource Technology, 97, 2389–2401.

    Article  Google Scholar 

  14. Arvanitoyannis, I. S., & Kassaveti, A. (2008). Int Journal of Food Science and Technology, 43(726), 745.

    Google Scholar 

  15. Rathna, G. V. N., & Damodaran, S. (2002). J. Apll. Polym. Sci., 85, 45–51.

    Article  CAS  Google Scholar 

  16. Rathna, G. V. N., & Damodaran, S. (2001). Journal of Applied Polymer Science, 81, 2190–2196.

    Article  CAS  Google Scholar 

  17. Rathna, G. V. N., & Gunasekaran, S. (2004). Polymer International, 53, 1994–2000.

    Article  CAS  Google Scholar 

  18. Léonard, R., Lhernould, S., Carlué, M., Fleurat, P., Maftah, A., & Costa, G. (2005). Glycoconjugate J., 22, 71–78.

    Article  Google Scholar 

  19. Zhang, S.-P., & Ping, W. (2006). Shengwu Jiagong Guocheng, 4, 4–8.

    CAS  Google Scholar 

  20. Kurniawan, L., Qio, G. G., & Zhang, X. Q. (2007). Biomacromolecules, 8, 2909–2915.

    Article  CAS  Google Scholar 

  21. Solanki, K., Shah, S., & Gupta, M. N. (2008). Biocatalysis and Biotransformation, 26, 258–265.

    Article  CAS  Google Scholar 

  22. Amiya, T., & Tanaka, T. (1987). Macromolecules, 20, 1162–1164.

    Article  CAS  Google Scholar 

  23. Lu, G. H., & Chen, T. C. (1999). Journal of Food Engineering, 42, 147–151.

    Article  Google Scholar 

  24. Hwang, D. C., & Damodaran, S. (1996). Journal of Agricultural and Food Chemistry, 44, 751–758.

    Article  CAS  Google Scholar 

  25. Martins, V. G., Costa, J. A. V., & Prentice-Hernández, C. (2009). Quím. Nova, 32, 61–66.

    CAS  Google Scholar 

  26. Hwang, D. C., & Damodaran, S. (1997). Journal of the American Oil Chemists' Society, 74, 1165–1171.

    Article  CAS  Google Scholar 

  27. Scopes, R. K. (1974). Analytical Biochemistry, 59, 277–282.

    Article  CAS  Google Scholar 

  28. Hall, R. J., Trinder, N., & Givens, D. I. (1973). The Analyst, 98, 673–686.

    Article  CAS  Google Scholar 

  29. Nozaki, Y., & Tanford, C. (1967). Journal of the American Chemical Society, 89, 736–749.

    Article  CAS  Google Scholar 

  30. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  31. Gehrke, S. H. (1993). In advances in polymer science 110—responsive gels: volume transitions II. In: K. Dusek (Ed.). Berlin: Springer.

  32. Okuyama, Y., Yoshida, R., Sakai, K., Okano, T., & Sakurai, Y. (1993). J. Biomater. Sci. Polym. Ed., 4, 545–556.

    CAS  Google Scholar 

  33. Dave, A., Vaishnav, U., Desai, R., Shah, A., Ankleshwaria, B., & Mehta, M. (1995). Journal of Applied Polymer Science, 58, 853–859.

    Article  CAS  Google Scholar 

  34. Pal, K., Banthia, A. K., & Majumdar, D. K. (2007). J. Mater. Sci. Mater Med., 18, 1889–1894.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank The Coordination for Improvement of Higher Education Personnel in Brazil (CAPES) and National Council for Scientific and Technological Development of Brazil (CNPq) for financial support to carry out experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Prentice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, V.G., Costa, J.A.V., Damodaran, S. et al. Chemical Modification and Structural Analysis of Protein Isolates to Produce Hydrogel using Whitemouth Croaker (Micropogonias furnieri) Wastes. Appl Biochem Biotechnol 165, 279–289 (2011). https://doi.org/10.1007/s12010-011-9250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9250-y

Keywords

Navigation