Skip to main content
Log in

Comparison of Denitrification Between Paracoccus sp. and Diaphorobacter sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Denitrification was compared between Paracoccus sp. and Diaphorobacter sp. in this study, both of which were isolated from activated sludge of a denitrifying reactor. Denitrification of both isolates showed contrasting patterns, where Diaphorobacter sp. showed accumulation of nitrite in the medium while Paracoccus sp. showed no accumulation. The nitrate reduction rate was 1.5 times more than the nitrite reduction in Diaphorobacter sp., as analyzed by the resting state denitrification kinetics. Increasing the nitrate concentration in the medium increased the nitrite accumulation in Diaphorobacter sp., but not in Paracoccus sp., indicating a branched electron transfer during denitrification. Diaphorobacter sp. was unable to denitrify efficiently at high nitrate concentrations from 1 M, but Paracoccus sp. could denitrify even up to 2 M nitrate. Paracoccus sp. was found to be an efficient denitrifier with insignificant amounts of nitrite accumulation, and it could also denitrify high amounts of nitrate up to 2 M. Efficient denitrification without accumulation of intermediates like nitrite is desirable in the removal of high nitrates from wastewaters. Paracoccus sp. is shown to suffice this demand and could be a potential organism to remove high nitrates effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almeida, J. S., Julio, S. M., Reis, M. A. M., & Carrondo, M. J. T. (1995). Biotechnology and Bioengineering, 46, 194–201.

    Article  CAS  Google Scholar 

  2. Almeida, J. S., Reis, M. A. M., & Carrondo, M. J. T. (1995). Biotechnology and Bioengineering, 46, 476–484.

    Article  CAS  Google Scholar 

  3. APHA. (1995). Standard methods (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  4. Betlach, M. R., & Tiedje, J. M. (1981). Applied and Environmental Microbiology, 42, 1074–1084.

    CAS  Google Scholar 

  5. Carlson, C. A., & Ingraham, J. L. (1983). Applied and Environmental Microbiology, 45, 1247–1253.

    CAS  Google Scholar 

  6. Clarkson, W. W., Ross, B. J. B., Krishnamachari, S. (1991). In 45th Purdue Industrial Waste conference Proceedings Lewis Publishers, Inc., Chelsea, MI.

  7. Constantin, H., & Fick, M. (1997). Water Research, 31, 583–589.

    Article  CAS  Google Scholar 

  8. Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2007). Bioresource Technology, 98, 247–252.

    Article  CAS  Google Scholar 

  9. Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2008). Applied Biochemistry and Biotechnology, 151, 433–440.

    Article  CAS  Google Scholar 

  10. Fernandez-Nava, Y., Maranon, E., Soons, J., & Castrillon, L. (2008). Bioresource Technology, 99, 7976–7981.

    Article  CAS  Google Scholar 

  11. Francis, C. W., & Mankin, J. B. (1977). Water Research, 11, 289–294.

    Article  CAS  Google Scholar 

  12. Glass, C., & Silverstein, J. (1998). Water Research, 32, 831–839.

    Article  CAS  Google Scholar 

  13. Glass, C., & Silverstein, J. (1999). Water Research, 33, 223–229.

    Article  CAS  Google Scholar 

  14. Jenkins, D., & Medsker, L. L. (1964). Analytical Chemistry, 36, 610–612.

    Article  CAS  Google Scholar 

  15. Khan, S. T., & Hiraishi, A. (2002). The Journal of General and Applied Microbiology, 48, 299–308.

    Article  CAS  Google Scholar 

  16. Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2007). Applied Microbiology and Biotechnology, 77, 403–409.

    Article  CAS  Google Scholar 

  17. Korner, H., & Zumft, W. G. (1989). Applied and Environmental Microbiology, 55, 1670–1676.

    CAS  Google Scholar 

  18. Kucera, I., Dadak, V., & Dobry, R. (1983). European Journal of Biochemistry, 130, 359–364.

    Article  CAS  Google Scholar 

  19. Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). Briefings in Bioinformatics, 9, 299–306.

    Article  CAS  Google Scholar 

  20. Lee, M., Woo, S. G., & Kim, M. K. (2011). International Journal of Systematic and Evolutionary Microbiology. doi:10.1099/ijs.0.017897-0.

  21. Liu, X.-Y., Wang, B.-J., Jiang, C.-Y., & Liu, S.-J. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 2693–2695.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Pillai, P., & Archana, G. (2008). Applied Microbiology and Biotechnology, 78, 643–650.

    Article  CAS  Google Scholar 

  24. Pinar, G., Duque, E., Haidour, A., Oliva, J.-M., Sanchez-Barbero, L., Calvo, V., et al. (1997). Applied and Environmental Microbiology, 63, 2071–2073.

    CAS  Google Scholar 

  25. Poole, R. K. (2005). Biochemical Society Transactions, 33, 176–180.

    Article  CAS  Google Scholar 

  26. Rijn, J. V., Tal, Y., & Barak, Y. (1996). Applied and Environmental Microbiology, 62, 2615–2620.

    Google Scholar 

  27. Srinandan, C. S., Jadav, V., Cecilia, D., & Nerurkar, A. S. (2010). Biofouling, 26, 449–459.

    Article  CAS  Google Scholar 

  28. Thomsen, J. K., Geest, T., & Cox, R. P. (1994). Applied and Environmental Microbiology, 60, 536–541.

    CAS  Google Scholar 

  29. Tiedje, J. M. (1994). In Methods of soil analysis, part 2. Microbiological and biochemical properties. Madison: Soil Science Society of America, pp. 245–267.

  30. Tiedje, J. M., Sextone, A. J., Myrold, D. D., & Robinson, J. A. (1982). Antonie van Leeuwenhoek, 48, 569–583.

    Article  CAS  Google Scholar 

  31. WHO (1998). In Guidelines for drinking-water quality, 2nd ed. Addendum to vol. 2, Geneva.

  32. Yufei, T., & Guodong, J. (2010). Bioresource Technology, 101, 174–180.

    Article  Google Scholar 

  33. Zala, S., Nerurkar, A., Desai, A., Ayyer, J., & Akolkar, V. (1999). Biotechnology Letters, 21, 481–485.

    Article  CAS  Google Scholar 

  34. Zumft, W. G. (1992). In A. Ballows, H. G. Triper, M. Dworkin, & W. Harder (Eds.), The Prokaryotes, I (pp. 554–581). New York: Springer.

    Google Scholar 

  35. Zumft, W. G. (1997). Microbiology and Molecular Biology Reviews, 61, 533–616.

    CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Gujarat State Biotechnology Mission (GSBTM) grant (GSBTM/MD/Projects/1450/2004-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha S. Nerurkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarthy, S.S., Pande, S., Kapoor, A. et al. Comparison of Denitrification Between Paracoccus sp. and Diaphorobacter sp.. Appl Biochem Biotechnol 165, 260–269 (2011). https://doi.org/10.1007/s12010-011-9248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9248-5

Keywords

Navigation