Skip to main content
Log in

Growth Inhibition and Induction of Stress Protein, GroEL, of Bacillus cereus Exposed to Antibacterial Peptide Isolated from Bacillus subtilis SC-8

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the antibacterial effect of BSAP-254 on Bacillus cereus with the induced stress proteins. The BSAP-254 is an antimicrobial peptide isolated from soybean-fermenting bacteria, Bacillus subtilis SC-8. It had a narrow spectrum of activity against B. cereus group. The growth inhibitory effect of BSAP-254 (50 μg/mL) reduced the population of B. cereus from >108 to 104 colony-forming units per milliliter within 30 min. In B. cereus exposed to BSAP-254, 14 intracellular proteins were differentially expressed as determined by 2-DE coupled with MS. Of the differentially expressed proteins identified, the stress protein GroEL, which is heat shock protein, was induced in B. cereus exposed to antibacterial peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Raso, J., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., & Swanson, B. G. (1998). International Journal of Food Microbiology, 44, 125–132.

    Article  CAS  Google Scholar 

  2. Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., McIlvaney, L., & Farish, O. (1999). Applied and Environmental Microbiology, 65, 1312–1315.

    CAS  Google Scholar 

  3. Kim, C., Hung, Y. C., & Brackett, R. E. (2000). International Journal of Food Microbiology, 61, 199–207.

    Article  CAS  Google Scholar 

  4. Coroller, L., Leguerinel, I., & Mafart, P. (2001). Applied and Environmental Microbiology, 67, 317–322.

    Article  CAS  Google Scholar 

  5. Valero, M., Sarrías, J. A., Alvarez, D., & Salmerón, M. C. (2006). Food Microbiology, 23, 367–371.

    Article  CAS  Google Scholar 

  6. Cho, M., Choi, Y., Park, H., Kim, K., Woo, G. J., & Park, J. (2007). Journal of Food Protection, 70, 97–101.

    CAS  Google Scholar 

  7. Akbas, M. Y., & Ozdemir, M. (2008). Food Microbiology, 25, 386–391.

    Article  CAS  Google Scholar 

  8. Pol, I. E., van Arendonk, W. G., Mastwijk, H. C., Krommer, J., Smid, E. J., & Moezelaar, R. (2001). Applied and Environmental Microbiology, 67, 1693–1699.

    Article  CAS  Google Scholar 

  9. Park, Y. B., Guo, J. Y., Rahman, S. M., Ahn, J., & Oh, D. H. (2009). Journal of Food Science, 74, M185–M189.

    Article  CAS  Google Scholar 

  10. Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Letters in Applied Microbiology, 38, 251–256.

    Article  CAS  Google Scholar 

  11. Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., et al. (2004). Journal of Applied Microbiology, 97, 942–949.

    Article  CAS  Google Scholar 

  12. Straus, S. K., & Hancock, R. E. W. (2006). Biochimica et Biophysica Acta, 1758, 1215–1223.

    Article  CAS  Google Scholar 

  13. Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wójcik, K., Puklo, M., Lupa, B., et al. (2004). Antimicrobial Agents and Chemotherapy, 48, 4673–4679.

    Article  CAS  Google Scholar 

  14. Campos, M. A., Vargas, M. A., Regueiro, V., Llompart, C. M., Albertí, S., & Bengoechea, J. A. (2004). Infection and Immunity, 72, 7107–7114.

    Article  CAS  Google Scholar 

  15. Gatzeva-Topalova, P. Z., May, A. P., & Sousa, M. C. (2005). Biochemistry, 44, 5328–5338.

    Article  CAS  Google Scholar 

  16. Fehri, L. F., Sirand-Pugnet, P., Gourgues, G., Jan, G., Wróblewski, H., & Blanchard, A. (2005). Antimicrobial Agents and Chemotherapy, 49, 4154–4165.

    Article  CAS  Google Scholar 

  17. Lee, N. K., Yeo, I. C., Park, J. W., Kang, B. S., & Hahm, Y. T. (2010). Journal of Bioscience and Bioengineering, 110, 298–303.

    Article  CAS  Google Scholar 

  18. Sivapathasekaran, C., Mukherjee, S., Samanta, R., & Sen, R. (2009). Analytical and Bioanalytical Chemistry, 395, 845–854.

    Article  CAS  Google Scholar 

  19. Lee, S. K., Kim, Y., Kim, S. S., Lee, J. H., Cho, K., Lee, S. S., et al. (2009). Proteomics, 9, 4389–4405.

    Article  CAS  Google Scholar 

  20. Stein, T. (2005). Molecular Microbiology, 56, 845–857.

    Article  CAS  Google Scholar 

  21. Morikawa, M., Hirata, Y., & Imanaka, T. (2000). Biochimica et Biophysica Acta, 1488, 211–2118.

    CAS  Google Scholar 

  22. Zhang, L., Dhillon, P., Yan, H., Farmer, S., & Hancock, R. E. (2000). Antimicrobial Agents and Chemotherapy, 44, 3317–3321.

    Article  CAS  Google Scholar 

  23. Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., & Yu, Z. L. (2008). Letters in Applied Microbiology, 47, 180–186.

    Article  CAS  Google Scholar 

  24. Narberhaus, F. (1999). Molecular Microbiology, 31, 1–8.

    Article  CAS  Google Scholar 

  25. Periago, P. M., van Schaik, W., Abee, T., & Wouters, J. A. (2002). Applied and Environmental Microbiology, 68, 3486–3495.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2009–0073489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Tae Hahm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, N.K., Yeo, IC., Park, J.W. et al. Growth Inhibition and Induction of Stress Protein, GroEL, of Bacillus cereus Exposed to Antibacterial Peptide Isolated from Bacillus subtilis SC-8. Appl Biochem Biotechnol 165, 235–242 (2011). https://doi.org/10.1007/s12010-011-9246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9246-7

Keywords

Navigation