Skip to main content
Log in

Production and Physico-chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa strain OBP1, isolated from petroleum sludge, was used to produce biosurfactant from a modified mineral salt medium with 2% n-hexadecane as sole source of carbon. The crude biosurfactant was fractionated using TLC and HPLC. Using FTIR spectroscopy, 1H NMR, and LC-MS analyses, the chemical structure of the purified fraction of crude biosurfactant was identified as rhamnolipid species. The LC-MS spectra show that monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β- hydroxydecanoate, Rha-C10-C10) was produced in abundance with the predominant congener [M–H] ions for l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate (Rha-Rha-C10-C10). Seven different carbon substrates and five nitrogen sources were examined for their effect on rhamnolipid production. Using n-hexadecane (20 g/l) as carbon substrate and urea along with (NH4)2SO4 (2 g/l each) as nitrogen source was found to be the best, with a maximum yield of 4.8 g/l. The biosurfactant reduced the surface tension of water to 31.1 mNm−1 with a critical micelle concentration of 45 mg/l. The biosurfactant showed a better emulsifying activity against a variety of hydrocarbon and achieved a maximum emulsion index of 82% for diesel. The purified biosurfactant showed a significant antibacterial activity against Staphylococcus aureus at a minimum inhibitory concentration of 8 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hardegger, M., Koch, T. A. K., Ochsner, U. A., Fiechter, A., & Reiser, J. (1994). Applied and Environmental Microbiology, 60, 3679–3687.

    CAS  Google Scholar 

  2. Shoham, Y., Rosenberg, M., & Rosenberg, E. (1983). Applied Environmental Microbiology, 46, 573–577.

    CAS  Google Scholar 

  3. Zajic, J. E., Guignard, H., & Gerson, D. F. (1977). Biotechnology and Bioengineering, 19, 1303–1320.

    Article  CAS  Google Scholar 

  4. Razafindralambo, H., Poquot, M., Baniel, A., Popineau, Y., Hbid, C., Jacques, P., et al. (1996). Journal of American Oil Chemical Society, 73, 149–151.

    Article  CAS  Google Scholar 

  5. Van Dyke, M. I., Couture, P., Brauer, M., Lee, H., & Trevors, J. T. (1993). Canadian Journal of Microbiology, 39, 1071–1078.

    Article  Google Scholar 

  6. Velikonja, J., & Kosaric, N. (1993). Biosurfactants: Production, properties, applications (pp. 419–446). New York: Dekker.

    Google Scholar 

  7. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  8. Mata-Sandoval, J. C., Karns, J., & Torrents, A. (1999). Journal of Chromatography A, 864, 211–220.

    Article  CAS  Google Scholar 

  9. Syldatk, C., & Wagner, F. (1987). In N. Kosaric, W. L. Cairns, & N. C. C. Gray (Eds.), Biosurfactants and biotechnology (pp. 89–120). New York: Dekker.

    Google Scholar 

  10. Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Biochimica et Biophysica Acta, 1440, 244–253.

    Google Scholar 

  11. Soberón-Chavez, G., Lépine, F., & Déziel, E. (2005). Applied Microbiology and Biotechnology, 68, 718–725.

    Article  Google Scholar 

  12. Monterio, S. A., Sassaki, G. L., de Souza, L. M., Meira, J. A., de Araújo, J. M., Mitchell, D. A., et al. (2007). Chemistry and Physics of Lipids, 147, 1–13.

    Article  Google Scholar 

  13. Burger, M. M., Glaser, L., & Burton, R. M. (1966). Methods in Enzymology, 8, 441–445.

    Article  CAS  Google Scholar 

  14. Ochsner, U. A., Koch, A. K., Fiechter, A., & Reiser, J. (1994). Journal of Bacteriology, 176, 2044–2054.

    CAS  Google Scholar 

  15. Maier, R. M., & Soberón-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–633.

    Article  CAS  Google Scholar 

  16. Mulligan, C. N. (2005). Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  17. Wei, Y. H., Chou, C. L., & Chang, J. S. (2005). Biochemical Engineering Journal, 27, 146–154.

    Article  CAS  Google Scholar 

  18. Siegmund, I., & Wagner, F. (1991). Biotechnology Techniques, 5, 256–268.

    Article  Google Scholar 

  19. Lowry, O. H., Rosebough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  20. Chandrasekaran, E. V., & Bemiller, J. N. (1980). In L. Wrhiste & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry (Vol. III, pp. 89–97). New York: Academic.

    Google Scholar 

  21. Wu, J. Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008). Bioresource Technology, 99, 1157–1164.

    Article  CAS  Google Scholar 

  22. George, S., & Jayachandran, K. (2008). Applied Biochemistry and Biotechnology, 58, 428–434.

    Google Scholar 

  23. Abalos, A., Viñas, M., Sabaté, J., Manresa, M. A., & Solanas, A. M. (2004). Biodegradation, 15, 249–260.

    Article  CAS  Google Scholar 

  24. Bodour, A. A., & Maier, R. M. (1998). Journal of Microbiological Methods, 32, 273–280.

    Article  CAS  Google Scholar 

  25. Cooper, D. G., & Zajic, J. E. (1980). Advances in Applied Microbiology, 26, 299–253.

    Article  Google Scholar 

  26. Price, P., & Mcmillan, T. J. (1990). Cancer Research, 50, 1392–6.

    CAS  Google Scholar 

  27. Sandoval, J. C. M., Karns, J., & Torrents, A. (1999). Journal of Chromatography A, 864, 211–220.

    Article  Google Scholar 

  28. Perfumo, A., Banat, I. M., Canganella, F., & Marchant, R. (2006). Applied Microbiology and Biotechnology, 72, 132–138.

    Article  CAS  Google Scholar 

  29. Sandoval, J. C. M., Karns, J., & Torrents, A. (2001). Microbiological Research, 155, 249–256.

    Google Scholar 

  30. Sim, L., Ward, O. P., & Li, Z.-Y. (1997). Industrial Microbiology and Biotechnology, 19, 232–238.

    Article  CAS  Google Scholar 

  31. Rahman, K. S. M., Rahman, T. J., McClean, S., Marchant, R., & Banat, I. M. (2002). Biotechnology Progress, 18, 1277–1281.

    Article  CAS  Google Scholar 

  32. Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Antonie van Leeuwenhoek, 85, 1–8.

    Article  CAS  Google Scholar 

  33. Arino, S., Marchal, R., & Vandecasteele, J.-P. (1996). Applied Microbiology and Biotechnology, 45, 162–168.

    Article  CAS  Google Scholar 

  34. Déziel, E., Lépine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica et Biophysica Acta, 1440, 244–252.

    Google Scholar 

  35. Bodour, A. A., Drces, K. P., & Maier, R. M. (2003). Applied Environmental Microbiology, 69, 3280–3287.

    Article  CAS  Google Scholar 

  36. Costa, S. G. V. A. O., Nitschke, M., Hadaad, R., Eberlin, M. N., & Contiero, J. (2006). Process Biochemistry, 41, 483–488.

    Article  CAS  Google Scholar 

  37. Patel, R. M., & Desai, A. J. (1997). Letters in Applied Microbiology, 25, 91–94.

    Article  CAS  Google Scholar 

  38. Benincasa, M., Contiero, J., Manresa, A., & Moraes, I. O. (2002). Journal of Food Engineering, 54, 283–288.

    Article  Google Scholar 

  39. Tuleva, B. K., Ivanov, G. R., & Christova, N. E. (2002). Z Naturforsch C, 57, 356–360.

    CAS  Google Scholar 

  40. Pornsunthorntawee, P., Wongpanit, P., Chavadej, S., Abe, M., & Rujiravanit, R. (2008). Bioresource Technology, 99, 1589–1595.

    Article  CAS  Google Scholar 

  41. Benincasa, M., & Accorsini, F. R. (2008). Bioresource Technology, 99, 3843–3849.

    Article  CAS  Google Scholar 

  42. Haba, E., Abalos, A., Jauregui, O., Espuny, M. J., & Manresa, A. (2003). Journal of Surfactants and Detergents, 6, 155–161.

    Article  CAS  Google Scholar 

  43. Zhang, Y., & Miller, R. M. (1995). Applied Environmental Microbiology, 61, 2247–2251.

    CAS  Google Scholar 

  44. Zhang, Y., Maier, W. J., & Miller, R. M. (1997). Environmental Science and Technology, 31, 2211–2217.

    Article  CAS  Google Scholar 

  45. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., Garcia, F., & Manresa, A. (2001). Langmuir, 17, 367–1371.

    Article  Google Scholar 

  46. Mercadé, M. E., Manresa, M. A., Robert, M., Espuny, M. J., de Andŕes, C., & Guinea, J. (1993). Bioresource Technology, 43, 1–6.

    Article  Google Scholar 

  47. Syldatk, C., Lang, S., & Wagner, F. (1985). Z Naturfosch, 40, 51–60.

    CAS  Google Scholar 

  48. Sheppard, J. D., & Mulligan, C. N. (1987). Applied Microbiology and Biotechnology, 27, 110–116.

    Article  CAS  Google Scholar 

  49. Abdul-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. N. (2008). Applied Biochemistry and Biotechnology, 2, 329–345.

    Google Scholar 

  50. Banat, I. M. (1995). Bioresource Technology, 51, 1–12.

    Article  CAS  Google Scholar 

  51. Kopecka-Leitmanova, A., Devinsky, F., Mlynarcik, D., & Lacko, I. (1989). Drug Metabolism and Drug Interaction, 7, 29–50.

    Article  CAS  Google Scholar 

  52. Lang, S., & Wagner, F. (1993). Biosurfactants: Bioconversion of oils and sugars to glycolipids. In N. Kosaric (Ed.), Biosurfactants: Production, properties, and applications (pp. 251–268). New York: Dekker.

    Google Scholar 

  53. Hommel, R., Stüwer, O., Stuber, W., Haferburg, D., & Kleber, H. P. (1987). Applied Microbiology and Biotechnology, 26, 199–205.

    Article  CAS  Google Scholar 

  54. Kitamoto, D., Yanagishita, H., Nakane, T., Kamisawa, C., & Nakahara, T. (1993). Journal of Biotechnology, 29, 91–96.

    Article  CAS  Google Scholar 

  55. Finnerty, W. R. (1994). Environmental Biotechnology, 5, 291–295.

    CAS  Google Scholar 

  56. Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Biotechnology Progress, 21, 1593–1600.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financed by the Oil and Natural Gas Corporation, India. The authors would like to thank Dr. A. J. Thakur and Mr. S. Das for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal Bharali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharali, P., Konwar, B.K. Production and Physico-chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge. Appl Biochem Biotechnol 164, 1444–1460 (2011). https://doi.org/10.1007/s12010-011-9225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9225-z

Keywords

Navigation