Antioxidant Activity and Protective effect of Banana Peel against Oxidative Hemolysis of Human Erythrocyte at Different Stages of Ripening

Abstract

Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl3), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin–Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl3 and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its utilization: an overview. Journal of Scientific and Industrial Research, 69, 323–329. nopr.niscair.res.in/bitstream/123456789/…/JSIR%2069(5)%20323-329.pdf.

    CAS  Google Scholar 

  2. 2.

    Wolfe, K. L., & Liu, R. H. (2003). Apple peels as a value-added food ingredient. Journal of Agriculture and Food Chemistry, 51(6), 1676–1683. doi:10.1021/jf025916z.

    Article  CAS  Google Scholar 

  3. 3.

    Larrauri, J. A., Rupe'rez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango peels as a new tropical fibre: preparation and characterization. Lebensmittel-Wissenschaft und Technologie, 29, 729–733. www.ingentaconnect.com/content/ap/fs/1996/00000029/…/art00113.

    Article  CAS  Google Scholar 

  4. 4.

    Arora, A., Choudhary, D., Agarwal, R., & Singh, V. P. (2008). Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. International Journal of Food Science & Technology, 43, 1913–1912. doi:10.1111/j.1365-2621.2008.01743.x.

    Article  CAS  Google Scholar 

  5. 5.

    Montelongo, R. G., Lobo, M. G., & González, M. (2010). Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chemistry, 119, 1030–1039. doi:10.1016/j.foodchem.2009.08.012.

    Article  Google Scholar 

  6. 6.

    Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300. geronj.oxfordjournals.org/content/11/3/298.full.pdf.

    CAS  Google Scholar 

  7. 7.

    Davey, M. W., Stals, E., Ngoh-Newilah, G., et al. (2007). Sampling strategies and variability in fruit pulp micronutrient contents of west and central African bananas and plantains (Musa Species). Journal of Agriculture and Food Chemistry, 55, 2633–2644. doi:10.1021/jf063119l.

    Article  CAS  Google Scholar 

  8. 8.

    Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., et al. (2002). Change in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214, 751–758. www.ncbi.nlm.nih.gov/pubmed/11882944.

    Article  CAS  Google Scholar 

  9. 9.

    Wang, S. Y., & Jiao, H. J. (2001). Changes in oxygen-scavenging system and membrane lipid peroxidation during maturation and ripening in blackberry. Journal of Agricultural and Food Chemistry, 49, 1612–1619. doi:10.1021/jf0013757.

    Article  CAS  Google Scholar 

  10. 10.

    Jinesh, V. K., Jaishree, V., Badami, S., & Shyam, W. (2010). Comparative evaluation of antioxidant properties of edible and non edible leaves of Anethum graveolens Linn. Indian Journal of Natural Products and Resources, 1(2), 168–173. IPC Code; Int. cl. A61K 36/00, A61P 17/18.

    Google Scholar 

  11. 11.

    Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., & Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chemistry, 94, 19–25. doi:10.1016/j.foodchem.2004.09.047.

    Article  CAS  Google Scholar 

  12. 12.

    Temraz, A., & Tantawy, W. H. (2008). Characterization of antioxidant activity of extract from Artemisia Vulgaris. Pakistan Journal of Pharmaceutical Sciences, 21, 321–326. www.ncbi.nlm.nih.gov/pubmed/18930849.

    CAS  Google Scholar 

  13. 13.

    Ayoola, G. A., Coker, H., Adesegun, S. A., Adepoju-Bello, A. A., Obaweya, K., Ezennia, E. C., et al. (2008). Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research, 3, 1019–1024. ajol.info/index.php/tjpr/article/view/14686/2766.

    Google Scholar 

  14. 14.

    Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76, 69–75. doi:10.1016/S0308-8146(01)00251-5.

    Article  CAS  Google Scholar 

  15. 15.

    Beauchamp, C. O., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. linkinghub.elsevier.com/retrieve/pii/0003269771903708.

    Article  CAS  Google Scholar 

  16. 16.

    Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: occurrence in higher plant. Plant Physiology, 59, 309–314. www.plantphysiol.org/cgi/content/abstract/59/2/309.

    Article  CAS  Google Scholar 

  17. 17.

    Abassi, N. A., Kushad, M. M., & Endress, A. G. (1998). Active oxygen-scavenging enzymes activities in developing apple flowers and fruits. Scientia Horticulturae, 74, 183–194. doi:10.1016/S0304-4238(98)00077-6.

    Article  Google Scholar 

  18. 18.

    Rafat, A., Philip, K., & Muniandy, S. (2009). Antioxidant potential and content of phenolic compounds in ethanolic extracts of selected parts of Andrographis paniculata. Journal of Medicinal Plants Research, 3, 197–202. ISSN 1996-0875©.

    Google Scholar 

  19. 19.

    Atrooz, O. M. (2009). The antioxidant activity and polyphenolic contents of different plant seeds extracts. Pakistan Journal of Biological Sciences, 12, 1063–1068. doi:10.3923/pjbs.2009.1063.1068.

    Article  Google Scholar 

  20. 20.

    Brennan, T., & Frenkel, C. (1977). Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology, 59, 411–416. PMCID: PMC542414.

    Article  CAS  Google Scholar 

  21. 21.

    Huang, R., Xia, R., Hu, L., Lu, Y., & Wang, M. (2007). Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Scientia Horticulturae, 113, 166–172. doi:10.1016/j.scienta.2007.03.010.

    Article  CAS  Google Scholar 

  22. 22.

    Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 79, 351–354. doi:10.1016/S0308-8146(02)00186-3.

    Article  CAS  Google Scholar 

  23. 23.

    Nguyen, T. B. T., Ketsa, S., & Van Doorn, W. G. (2003). Relationship between browning and antioxidant activity of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30(2), 187–193. linkinghub.elsevier.com/retrieve/pii/S0925521405001183.

    Article  CAS  Google Scholar 

  24. 24.

    Chung, H. S., Chang, L. C., Lee, S. K., Shamon, L. A., Van Breemen, R. B., Mehta, R. G., et al. (1999). Flavonoid constituents of chorizanthe diffusa with potential cancer chemopreventive activity. Journal of Agriculture and Food Chemistry, 47, 36–41. doi:10.1021/jf980784o.

    Article  CAS  Google Scholar 

  25. 25.

    Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., et al. (2002). Comparision between the radical scavenging activity and antioxidant activity of six distilled and non distilled Mediterranean herbs and aromatic plants. Journal of Agriculture and Food Chemistry, 50, 6882–6890. doi:10.1021/jf020540a.

    Article  CAS  Google Scholar 

  26. 26.

    Kiyoshi, M., & Wahachiro, T. (2003). Change in polyphenol compound in banana pulp during ripening. Food preservation Science, 29(6), 347–351. rms1.agsearch.agropedia.affrc.go.jp/contents/JASI/pdf/…/68-3850.pdf.

    Google Scholar 

  27. 27.

    Singh, R. P., Murthy, K. N. C., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of the Pomegranate (Punica granatum) peel and seed extracts using in vitro model. Journal of Agriculture and Food Chemistry, 50(1), 81–86. ISSN 0021–8561.

    Article  CAS  Google Scholar 

  28. 28.

    Mokbel, M. S., & Hashinaga, F. (2005). Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) Fruits Peel. American Journal of Biochemistry and Biotechnology, 1(3), 125–131. ISSN 1553–3468.

    Article  Google Scholar 

  29. 29.

    Youdim, K. A., Shukitt-Hale, B., Mackinnon, S., Kalt, W., & Joseph, J. A. (2000). Polyphenolics enhances red blood cell resistance to oxidative stress: in vitro and in vivo. Biochemical Biophysical Acta, 1523, 117–123. www.ncbi.nlm.nih.gov/pubmed/11099865.

    CAS  Google Scholar 

  30. 30.

    Ajila, C. M., & Prasada Rao, U. J. S. (2008). Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food and Chemical Toxicology, 46, 303–309. doi:10.1016/j.fct.2007.08.024.

    Article  CAS  Google Scholar 

  31. 31.

    Chen, H. Y., & Yen, G. C. (2007). Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chemistry, 101, 686–694. doi:10.1016/j.foodchem.2006.02.047.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shanthy Sundaram.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sundaram, S., Anjum, S., Dwivedi, P. et al. Antioxidant Activity and Protective effect of Banana Peel against Oxidative Hemolysis of Human Erythrocyte at Different Stages of Ripening. Appl Biochem Biotechnol 164, 1192–1206 (2011). https://doi.org/10.1007/s12010-011-9205-3

Download citation

Keywords

  • Musa paradisica
  • Erythrocyte lysis
  • Superoxide dismutase
  • Radical scavenging activity
  • Phenolic content
  • Ripening