Skip to main content

Advertisement

Log in

Oxidative Stress Parameters of L929 Cells Cultured on Plasma-Modified PDLLA Scaffolds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress may produce high level of reactive oxygen species (ROS) following cell exposure to endogenous and exogenous factors. Recent experiments implicate oxidative stress as playing an essential role in cytotoxicity of many materials. The aim of this study was to measure intracellular malondialdehyde (MDA), advanced oxidation protein product (AOPP) levels, and superoxide dismutase (SOD) activities of L929 fibroblasts cultured on PDLLA, polyethylene glycol (PEG), or ethylenediamine (EDA) grafted PDLLA by plasma polymerization method. Cell proliferation on these scaffolds was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The study showed that MDA, AOPP levels, and SOD activities in L929 fibroblast cells cultured on all scaffolds were significantly different compared to the control group and each other. The highest MDA (0.42 ± 0.76 nmol/mg protein), AOPP (14.99 ± 4.67 nmol/mg protein) levels, and SOD activities (7.49 ± 3.74 U/mg protein) were observed in cells cultured on non-modified scaffolds; meanwhile, the most cell proliferation was obtained in EDA-modified scaffolds (MDA 0.15 ± 0.14 nmol/mg protein, AOPP 13.12 ± 3.86 nmol/mg protein, SOD 4.82 ± 2.64 U/mg protein). According to our finding, EDA- or PEG-modified scaffolds are potentially useful as suitable biomaterials in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams, D. (1997). Size and shape really matter: the influence of design on biocompatibility. Medical Device Technology, 8, 8–12.

    Google Scholar 

  2. Bruck, S. D. (1980). Problems and artifacts in the evaluation of polymeric materials for medical uses. Biomater, 1, 103–107.

    Article  CAS  Google Scholar 

  3. Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19, 459–466.

    Article  CAS  Google Scholar 

  4. Tian, H., & Tagaya, H. (2007). Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. Journal of Materials Science, 42, 3244–3250.

    Article  CAS  Google Scholar 

  5. Pizzoferrato, A., Vespucci, A., Ciapetti, G., & Stea, S. (1985). Biocompatibility testing of prosthetic implant materials by cell-cultures. Biomater, 6, 346–351.

    Article  CAS  Google Scholar 

  6. Williams, D. (1991). Objectivity in the evaluation of biological safety of medical devices and biomaterials. Medical Device Technology, 2, 44–48.

    CAS  Google Scholar 

  7. Delguerra, R. S., Cascone, M. G., Ricci, D., Martinoia, S., Parodi, M. T., Ahluwalia, A., et al. (1996). Optimization of the interaction between ethylene-vinyl alcohol copolymers and human endothelial cells. Journal of Materials Science: Materials in Medicine, 7, 8–12.

    Article  Google Scholar 

  8. Madamanchi, N. R., & Runge, M. S. (2007). Mitochondrial dysfunction in atherosclerosis. Circulation Research, 100, 460–473.

    Article  CAS  Google Scholar 

  9. Halliwell, B., & Gutteridge, J. M. C. (1999). Mechanisms of damage to cellular targets by oxidative stress: lipid peroxidation. In B. Halliwell & J. M. C. Gutteridge (Eds.), Free radicals in biology and medicine, Chapter 4 (3rd ed., pp. 284–306). Oxford: Oxford Scientific.

    Google Scholar 

  10. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A. T., Zingraff, J., et al. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International, 49, 1304–1313.

    Article  CAS  Google Scholar 

  11. Witko-Sarsat, V., Friedlander, M., Nguyen, K. T., Capeillere-Blandin, C., Nguyen, A. T., Canteloup, S., et al. (1998). Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. Journal of Immunology, 161, 2524–2532.

    CAS  Google Scholar 

  12. Kobayashi, T., Robinson, J. M., & Seguchi, H. (1998). Identification of intracellular sites of superoxide production in stimulated neutrophils. Journal of Cell Science, 111, 81–91.

    CAS  Google Scholar 

  13. Takeyama, N., Miki, S., Hirakawa, A., & Tanaka, T. (2002). Role of the mitochondrial permeability transition and cytochrome c release in hydrogen peroxide-induced apoptosis. Experiment Cell Res, 274, 16–24.

    Article  CAS  Google Scholar 

  14. Berendji, D., Kolb-Bachofen, V., Meyer, K. L., & Kroncke, K. D. (1999). Influence of nitric oxide on the intracellular reduced glutathione pool: different cellular capacities and strategies to encounter nitric oxide-mediated stress. Free Rad Biol Med, 27, 773–780.

    Article  CAS  Google Scholar 

  15. Gardner, A., Xu, F. H., Fady, C., Sarafian, T., Tu, Y. P., & Lichtenstein, A. (1997). Evidence against the hypothesis that BCL-2 inhibits apoptosis through an anti-oxidant effect. Cell Death and Differentiation, 4, 487–496.

    Article  CAS  Google Scholar 

  16. Ozturk-Guven, E., Demirbilek, M., Saglam, N., Karahaliloglu, Z., Erdal, E., Bayram, C., et al. (2008). Preparation and characterization of polyhydroxybutyrate scaffolds to be used in tissue engineering applications. Hacettepe J Biol & Chem, 36, 305–311.

    Google Scholar 

  17. Bayram, C., Mizrak, A. K., Akturk, S., Kursaklioglu, H., Iyisoy, A., Ifran, A., et al. (2010). In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents. Biomedical Materials, 5, 055007.

    Article  Google Scholar 

  18. Akman, A. C., Tıglı, R. S., Gumusderelioglu, M., & Nohutcu, R. M. (2010). bFGF-loaded HA-chitosan: a promising scaffold for periodontal tissue engineering. Journal of Biomedical Materials Research. Part A, 92, 953–962.

    Google Scholar 

  19. Demirbilek, M., & Pişkin, E. (2008). Effects of copper-cyclam and copper-cyclam/polymer complexes on heLa cells. Hacettepe J Biol & Chem, 36, 263–271.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J Biol Biochem, 193, 145–157.

    Google Scholar 

  21. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  CAS  Google Scholar 

  22. Yi-Sun, S., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500.

    Google Scholar 

  23. Lu, L., Peter, S. J., Lyman, M. D., Lai, H. L., Leite, S. M., Tamada, H. A., et al. (2000). In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomater, 21, 1837–1845.

    Article  CAS  Google Scholar 

  24. Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 122, 245–274.

    CAS  Google Scholar 

  25. Serrano, M. C., Pagani, R., Vallet-Regi, J., Pena, J., Ramila, A., Izquierdo, I., et al. (2004). In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts. Biomater, 25, 5603–5611.

    Article  CAS  Google Scholar 

  26. Boojar, M. M., & Goodarzi, F. (2006). Cytotoxicity and the levels of oxidative stress parameters in WI38 cells following 2 macrocyclic crown ethers treatment. Clinica Chimica Acta, 364, 321–327.

    Article  CAS  Google Scholar 

  27. Zwirska-Korczala, K., Adamczyk-Sowa, M., Sowa, P., Pilc, K., Suchanek, R., Pierzchala, K., et al. (2007). Role of leptin, ghrelin, angiotensin II and orexins in 3T3L1 preadipocyte cells proliferation and oxidative metabolism. Journal of Physiology and Pharmacology, 58, 53–64.

    Google Scholar 

  28. Muscoli, C., Fresta, M., Cardile, V., Palumbo, M., Renis, M., Puglisi, G., et al. (2002). Ethanol-induced injury in rat primary cortical astrocytes involves oxidative stress: effect of idebenone. Neuroscience Letters, 329, 21–24.

    Article  CAS  Google Scholar 

  29. Foyouzi, N., Berkkanoglu, M., Arici, A., Kwintkiewicz, J., Izquierdo, D., & Duleba, A. J. (2004). Effects of oxidants and antioxidants on proliferation of endometrial stromal cells. Fertility and Sterility, 82, 1019–1022.

    Article  CAS  Google Scholar 

  30. Heinecke, J. W. (1997). Mechanisms of oxidative damage of low intensity lipoprotein in human atherosclerosis. Current Opinion in Lipidology, 8, 268–274.

    Article  CAS  Google Scholar 

  31. Serrano, M. C., Pagani, R., Pena, J., & Portolés, M. T. (2005). Transitory oxidative stress in L929 fibroblasts cultured on poly(ε- caprolactone) films. Biomater, 26, 5827–5834.

    Article  CAS  Google Scholar 

  32. Ozyurt, H., Sogut, S., Yildirim, Z., Kart, L., Iraz, M., Armutcu, F., et al. (2004). Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats. Clinica Chimica Acta, 339, 65–75.

    Article  CAS  Google Scholar 

  33. Inoue, M., Sato, E. F., Nishikawa, M., Park, A. M., Kira, Y., Imada, I., et al. (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Current Medicinal Chemistry, 10, 2495–2505.

    Article  CAS  Google Scholar 

  34. Busciglio, J., Pelsman, A., Wong, C., Pigino, G., Yuan, M., Mori, et al. (2002). Altered metabolism of the amyloid b precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron, 33, 677–688.

    Article  CAS  Google Scholar 

  35. Aikawa, M., Sugiyama, S., Hill, C. C., Voglic, S. J., Rabkin, E., Fukumoto, Y., et al. (2002). Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation, 106, 1390–1396.

    Article  CAS  Google Scholar 

  36. Parrish, A. R., Catania, J. M., Orozco, J., & Gandolfi, A. J. (1999). Chemically induced oxidative stress disrupts the E-cadherin/catenin cell adhesion complex. Toxicological Sciences, 51, 80–86.

    Article  CAS  Google Scholar 

  37. Soheili, M. E., Goldberg, M., & Stanislawski, L. (2003). In vitro effect of ascorbate and Trolox on the biocompatibility of dental restorative materials. Biomater, 24, 3–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Erol Demirbilek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirbilek, M.E., Demirbilek, M., Karahaliloğlu, Z. et al. Oxidative Stress Parameters of L929 Cells Cultured on Plasma-Modified PDLLA Scaffolds. Appl Biochem Biotechnol 164, 780–792 (2011). https://doi.org/10.1007/s12010-011-9173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9173-7

Keywords

Navigation