Skip to main content
Log in

Reductive Alkylation Causes the Formation of a Molten Globule-Like Intermediate Structure in Geobacillus zalihae Strain T1 Thermostable Lipase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T m) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fojan, P., Jonson, P. H., Petersen, M. T., & Petersen, S. B. (2000). Biochimie, 82, 1033–1041.

    Article  CAS  Google Scholar 

  2. Ericsson, D. J., Kasrayan, A., Johansson, P., Bergfors, T., Sandström, A. G., Bäckvall, J. E., et al. (2008). Journal of Molecular Biology, 376, 109–119.

    Article  CAS  Google Scholar 

  3. Cajal, Y., Svendsen, A., De Bolós, J., Patkar, S. A., & Alsina, M. A. (2000). Biochimie, 82, 1053–1061.

    Article  CAS  Google Scholar 

  4. Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  5. Berglund, P. (2001). Biomolecular Engineering, 18, 13–22.

    Article  CAS  Google Scholar 

  6. Shaw, J. F. (2002). In T. M. Kuo & H. W. Gardner (Eds.), in Lipid Biotechnology (pp. 599–604). New York: Marcel Dekker.

    Google Scholar 

  7. Fatima, S., Mishra, A., Sen, P., & Khan, R. H. (2008). Protein and Peptide Letters, 15, 346–352.

    Article  CAS  Google Scholar 

  8. La Rotta Hernandez, C. E., Lütz, S., Liese, A., & Bon, E. P. S. (2005). Enzyme and Microbial Technology, 37, 582–588.

    Article  Google Scholar 

  9. Bommarius, A. S., Broering, J. M., Chaparro-Riggers, J. F., & Polizzi, K. M. (2006). Current Opinion in Biotechnology, 17, 606–610.

    Article  CAS  Google Scholar 

  10. Zhao, H., Chockalingam, K., & Chen, Z. (2002). Current Opinion in Biotechnology, 13, 104–110.

    Article  CAS  Google Scholar 

  11. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  12. Palomo, J. M., Segura, R. L., Fernandez-Lorente, G., Fernandez-Lafuente, R., & Guisán, J. M. (2007). Enzyme and Microbial Technology, 40, 704–707.

    Article  CAS  Google Scholar 

  13. Ampon, K., Salleh, A. B., Basri, M., Wan Yunus, W. M. Z., Razak, C. N. A., & Whitaker, J. R. (1993). Journal of Biosciences, 4, 154–160.

    CAS  Google Scholar 

  14. Basri, M., Th’ng, B. L., Razak, C. N. A., & Salleh, A. B. (1998). Annals of the New York Academy of Sciences, 864, 192–197.

    Article  CAS  Google Scholar 

  15. Ampon, K., Salleh, A. B., Salam, F., Wan Yunus, W. M. Z., Razak, C. N. A., & Basri, M. (1991). Enzyme and Microbial Technology, 13, 597–601.

    Article  CAS  Google Scholar 

  16. Fujita, Y., Hidaka, Y., & Noda, Y. (1995). Thermochimica Acta, 253, 117–125.

    Article  CAS  Google Scholar 

  17. Lllanes, A. (1999). Electronic Journal of Biotechnology, 2, 1–9.

    Google Scholar 

  18. Gao, X. G., Cao, S. G., & Zhang, K. C. (2000). Enzyme and Microbial Technology, 27, 74–82.

    Article  Google Scholar 

  19. Becker, P., Reesh, I. A., Markossian, S., Antranikian, G., & Märkl, H. (1997). Applied Microbiology and Biotechnology, 48, 184–190.

    Article  CAS  Google Scholar 

  20. Koops, B. C., Verheij, H. M., Slotboom, A. J., & Egmond, M. R. (1999). Enzyme and Microbial Technology, 25, 622–631.

    Article  CAS  Google Scholar 

  21. Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 96–103.

    Article  CAS  Google Scholar 

  22. Rahman, R. N. Z. R. A., Leow, T. C., Salleh, A. B., & Basri, M. (2007). BMC Microbiol, 7, 77.

    Article  Google Scholar 

  23. Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). Extremophiles, 11, 527–535.

    Article  CAS  Google Scholar 

  24. Dolginova, E. A., Roth, E., Sliman, I., & Weiner, L. M. (1992). Biochemistry, 31, 12248–12254.

    Article  CAS  Google Scholar 

  25. Wong, S. S., & Wong, L. J. C. (1992). Enzyme and Microbial Technology, 14, 874–886.

    Article  Google Scholar 

  26. Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Ebrahim Habibi, A., & Nemat-Gorgani, M. (2001). Biochimica et Biophysica Acta, 1548, 229–237.

    Article  CAS  Google Scholar 

  27. Hosseinkhani, S., Ranjbar, B., Naderi-Manesh, H., & Nemat-Gorgani, M. (2004). FEBS Letters, 561, 213–216.

    Article  CAS  Google Scholar 

  28. Shah, M. A., Tayyab, S., & Ali, R. (1996). International Journal of Biological Macromolecules, 18, 77–81.

    Article  CAS  Google Scholar 

  29. Rypniewski, W. R., Holden, H. M., & Rayment, I. (1993). Biochemistry, 32, 9851–9858.

    Article  CAS  Google Scholar 

  30. Hosseinkhani, S., Moosavi-Movahedi, A., & Nemat-Gorgani, M. (2003). Applied Biochemistry and Biotechnology, 110, 165–174.

    Article  CAS  Google Scholar 

  31. Means, G. E., & Feeney, R. E. (1995). Analytical Biochemistry, 224, 1–16.

    Article  CAS  Google Scholar 

  32. Ohgushi, M., & Wada, A. (1983). FEBS Letters, 164, 21–24.

    Article  CAS  Google Scholar 

  33. Mossavarali, S., Hosseinkhani, S., Ranjbar, B., & Miroliaei, M. (2006). International Journal of Biological Macromolecules, 39, 192–196.

    Article  CAS  Google Scholar 

  34. Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E., & Razgulyaev, O. I. (1990). FEBS Letters, 262, 20–24.

    Article  CAS  Google Scholar 

  35. Arai, M., Ito, K., Inobe, T., Nakao, M., Maki, K., Kamagata, K., et al. (2002). Journal of Molecular Biology, 321, 121–132.

    Article  CAS  Google Scholar 

  36. Fatima, S., Ahmad, B., & Khan, R. H. (2007). IUBMB Life, 59, 179–186.

    Article  CAS  Google Scholar 

  37. Ahmad, E., Fatima, S., Khan, M. M., & Khan, R. H. (2010). Biochimie, 92, 885–893.

    Article  CAS  Google Scholar 

  38. Sen, P., Ahmad, B., & Khan, R. H. (2008). European Biophysics Journal, 37, 1303–1308.

    Article  CAS  Google Scholar 

  39. Bradford, M. N. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  40. Kwon, D. Y., & Rhee, J. S. (1986). Journal of the American Oil Chemists' Society, 63, 89–92.

    Article  CAS  Google Scholar 

  41. Habeeb, A. F. S. A. (1966). Analytical Biochemistry, 14, 328–336.

    Article  CAS  Google Scholar 

  42. Yang, J. T., Wu, C. C., & Martinez, H. M. (1986). Methods in Enzymology, 130, 208–269.

    Article  CAS  Google Scholar 

  43. Wilkins, M. R., Lindskog, I., Gasteiger, E., Bairoch, A., Sanchez, J. C., Hochstrasser, D. F., et al. (1997). Electrophoresis, 18, 403–408.

    Article  CAS  Google Scholar 

  44. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). In J. M. Walker (Ed.), in The Proteomics Protocols Handbook (pp. 571–607). New Jersey: Humana Press.

    Chapter  Google Scholar 

  45. Weber, H. K., Zuegg, J., Faber, K., & Pleiss, J. (1997). Journal of Molecular Catalysis. B, Enzymatic, 3, 131–138.

    Article  CAS  Google Scholar 

  46. Lins, L., Thomas, A., & Brasseur, R. (2003). Protein Science, 12, 1406–1417.

    Article  CAS  Google Scholar 

  47. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.

    CAS  Google Scholar 

  48. Nath, D., & Rao, M. (2001). Biochemical and Biophysical Research Communications, 288, 1218–1222.

    Article  CAS  Google Scholar 

  49. Kataoka, M., Nishii, I., Fujisawa, T., Ueki, T., Tokunaga, F., & Goto, Y. (1995). Journal of Molecular Biology, 249, 215–228.

    Article  CAS  Google Scholar 

  50. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., & Gilmanshin, R. I. (1991). Biopolymers, 31, 119–128.

    Article  CAS  Google Scholar 

  51. Bikadi, Z., Demko, L., & Hazai, E. (2007). Archives of Biochemistry and Biophysics, 461, 225–234.

    Article  CAS  Google Scholar 

  52. Kumar, S., Tsai, C. J., Ma, B., & Nussinov, R. (2000). Journal of Biomolecular Structure & Dynamics, 11, 79–85.

    Google Scholar 

  53. Jeong, S. T., Kim, H. K., Kim, S. J., Chi, S. W., Pan, J. G., Oh, T. K., et al. (2002). The Journal of Biological Chemistry, 277, 17041–17047.

    Article  CAS  Google Scholar 

  54. Tyndall, J. D. A., Sinchaikul, S., Fothergill-Gilmore, L. A., Taylor, P., & Walkinshaw, M. D. (2002). Journal of Molecular Biology, 323, 859–869.

    Article  CAS  Google Scholar 

  55. Choi, W. C., Kim, M. H., Ro, H. S., Ryu, S. R., Oh, T. K., & Lee, J. K. (2005). FEBS Letters, 579, 3461–3466.

    Article  CAS  Google Scholar 

  56. Rahman, R. N. Z. R. A., Tejo, B. A., Basri, M., Rahman, M. B. A., Khan, F., Zain, S. M., et al. (2004). Applied Biochemistry and Biotechnology, 118, 11–20.

    Article  CAS  Google Scholar 

  57. Banci, L., Bertini, I., Cramaro, F., Conte, R. D., & Viezzoli, M. S. (2003). Biochemistry, 42, 9543–9553.

    Article  CAS  Google Scholar 

  58. James, J. J., Lakshmi, B. S., Seshasayee, A. S. N., & Gautam, P. (2007). FEBS Letters, 581, 4377–4383.

    Article  CAS  Google Scholar 

  59. Tejo, B. A. (2004). Ph.D. thesis, Universiti Putra Malaysia, Malaysia.

  60. Oelschlaeger, P., Schmid, R. D., & Pleiss, J. (2003). Biochemistry, 42, 8945–8956.

    Article  CAS  Google Scholar 

  61. Betz, S. F., Raleigh, D. P., & DeGrado, W. F. (1993). Current Opinion in Structural Biology, 3, 601–610.

    Article  CAS  Google Scholar 

  62. DeGrado, W. F. (1993). Nature, 365, 488–489.

    Article  CAS  Google Scholar 

  63. Matsumura, H., Yamamoto, T., Leow, T. C., Mori, T., Salleh, A. B., Basri, M., et al. (2008). Proteins: Structure, Function, and Bioinformatics, 70, 592–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude to Prof. Dr. Yasushi Kai and Dr. Hiroyoshi Matsumura for the protein structure determination, Prof. Dr. Ali A. Moosavi-Movahedi and Dr. Bimo Ario Tejo for their opinions, and the Ministry of Science, Technology and Innovation Malaysia for financial support (09-02-04-001). A special thank also to Prof. Dr. Tan Soon Guan for checking the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Thean Chor Leow or Abu Bakar Salleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, K.W., Leow, T.C., Rahman, R.N.Z.R.A. et al. Reductive Alkylation Causes the Formation of a Molten Globule-Like Intermediate Structure in Geobacillus zalihae Strain T1 Thermostable Lipase. Appl Biochem Biotechnol 164, 362–375 (2011). https://doi.org/10.1007/s12010-010-9140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9140-8

Keywords

Navigation