Abstract
A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T m) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.
Similar content being viewed by others
References
Fojan, P., Jonson, P. H., Petersen, M. T., & Petersen, S. B. (2000). Biochimie, 82, 1033–1041.
Ericsson, D. J., Kasrayan, A., Johansson, P., Bergfors, T., Sandström, A. G., Bäckvall, J. E., et al. (2008). Journal of Molecular Biology, 376, 109–119.
Cajal, Y., Svendsen, A., De Bolós, J., Patkar, S. A., & Alsina, M. A. (2000). Biochimie, 82, 1053–1061.
Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.
Berglund, P. (2001). Biomolecular Engineering, 18, 13–22.
Shaw, J. F. (2002). In T. M. Kuo & H. W. Gardner (Eds.), in Lipid Biotechnology (pp. 599–604). New York: Marcel Dekker.
Fatima, S., Mishra, A., Sen, P., & Khan, R. H. (2008). Protein and Peptide Letters, 15, 346–352.
La Rotta Hernandez, C. E., Lütz, S., Liese, A., & Bon, E. P. S. (2005). Enzyme and Microbial Technology, 37, 582–588.
Bommarius, A. S., Broering, J. M., Chaparro-Riggers, J. F., & Polizzi, K. M. (2006). Current Opinion in Biotechnology, 17, 606–610.
Zhao, H., Chockalingam, K., & Chen, Z. (2002). Current Opinion in Biotechnology, 13, 104–110.
Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.
Palomo, J. M., Segura, R. L., Fernandez-Lorente, G., Fernandez-Lafuente, R., & Guisán, J. M. (2007). Enzyme and Microbial Technology, 40, 704–707.
Ampon, K., Salleh, A. B., Basri, M., Wan Yunus, W. M. Z., Razak, C. N. A., & Whitaker, J. R. (1993). Journal of Biosciences, 4, 154–160.
Basri, M., Th’ng, B. L., Razak, C. N. A., & Salleh, A. B. (1998). Annals of the New York Academy of Sciences, 864, 192–197.
Ampon, K., Salleh, A. B., Salam, F., Wan Yunus, W. M. Z., Razak, C. N. A., & Basri, M. (1991). Enzyme and Microbial Technology, 13, 597–601.
Fujita, Y., Hidaka, Y., & Noda, Y. (1995). Thermochimica Acta, 253, 117–125.
Lllanes, A. (1999). Electronic Journal of Biotechnology, 2, 1–9.
Gao, X. G., Cao, S. G., & Zhang, K. C. (2000). Enzyme and Microbial Technology, 27, 74–82.
Becker, P., Reesh, I. A., Markossian, S., Antranikian, G., & Märkl, H. (1997). Applied Microbiology and Biotechnology, 48, 184–190.
Koops, B. C., Verheij, H. M., Slotboom, A. J., & Egmond, M. R. (1999). Enzyme and Microbial Technology, 25, 622–631.
Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 96–103.
Rahman, R. N. Z. R. A., Leow, T. C., Salleh, A. B., & Basri, M. (2007). BMC Microbiol, 7, 77.
Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). Extremophiles, 11, 527–535.
Dolginova, E. A., Roth, E., Sliman, I., & Weiner, L. M. (1992). Biochemistry, 31, 12248–12254.
Wong, S. S., & Wong, L. J. C. (1992). Enzyme and Microbial Technology, 14, 874–886.
Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Ebrahim Habibi, A., & Nemat-Gorgani, M. (2001). Biochimica et Biophysica Acta, 1548, 229–237.
Hosseinkhani, S., Ranjbar, B., Naderi-Manesh, H., & Nemat-Gorgani, M. (2004). FEBS Letters, 561, 213–216.
Shah, M. A., Tayyab, S., & Ali, R. (1996). International Journal of Biological Macromolecules, 18, 77–81.
Rypniewski, W. R., Holden, H. M., & Rayment, I. (1993). Biochemistry, 32, 9851–9858.
Hosseinkhani, S., Moosavi-Movahedi, A., & Nemat-Gorgani, M. (2003). Applied Biochemistry and Biotechnology, 110, 165–174.
Means, G. E., & Feeney, R. E. (1995). Analytical Biochemistry, 224, 1–16.
Ohgushi, M., & Wada, A. (1983). FEBS Letters, 164, 21–24.
Mossavarali, S., Hosseinkhani, S., Ranjbar, B., & Miroliaei, M. (2006). International Journal of Biological Macromolecules, 39, 192–196.
Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E., & Razgulyaev, O. I. (1990). FEBS Letters, 262, 20–24.
Arai, M., Ito, K., Inobe, T., Nakao, M., Maki, K., Kamagata, K., et al. (2002). Journal of Molecular Biology, 321, 121–132.
Fatima, S., Ahmad, B., & Khan, R. H. (2007). IUBMB Life, 59, 179–186.
Ahmad, E., Fatima, S., Khan, M. M., & Khan, R. H. (2010). Biochimie, 92, 885–893.
Sen, P., Ahmad, B., & Khan, R. H. (2008). European Biophysics Journal, 37, 1303–1308.
Bradford, M. N. (1976). Analytical Biochemistry, 72, 248–254.
Kwon, D. Y., & Rhee, J. S. (1986). Journal of the American Oil Chemists' Society, 63, 89–92.
Habeeb, A. F. S. A. (1966). Analytical Biochemistry, 14, 328–336.
Yang, J. T., Wu, C. C., & Martinez, H. M. (1986). Methods in Enzymology, 130, 208–269.
Wilkins, M. R., Lindskog, I., Gasteiger, E., Bairoch, A., Sanchez, J. C., Hochstrasser, D. F., et al. (1997). Electrophoresis, 18, 403–408.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). In J. M. Walker (Ed.), in The Proteomics Protocols Handbook (pp. 571–607). New Jersey: Humana Press.
Weber, H. K., Zuegg, J., Faber, K., & Pleiss, J. (1997). Journal of Molecular Catalysis. B, Enzymatic, 3, 131–138.
Lins, L., Thomas, A., & Brasseur, R. (2003). Protein Science, 12, 1406–1417.
Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.
Nath, D., & Rao, M. (2001). Biochemical and Biophysical Research Communications, 288, 1218–1222.
Kataoka, M., Nishii, I., Fujisawa, T., Ueki, T., Tokunaga, F., & Goto, Y. (1995). Journal of Molecular Biology, 249, 215–228.
Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., & Gilmanshin, R. I. (1991). Biopolymers, 31, 119–128.
Bikadi, Z., Demko, L., & Hazai, E. (2007). Archives of Biochemistry and Biophysics, 461, 225–234.
Kumar, S., Tsai, C. J., Ma, B., & Nussinov, R. (2000). Journal of Biomolecular Structure & Dynamics, 11, 79–85.
Jeong, S. T., Kim, H. K., Kim, S. J., Chi, S. W., Pan, J. G., Oh, T. K., et al. (2002). The Journal of Biological Chemistry, 277, 17041–17047.
Tyndall, J. D. A., Sinchaikul, S., Fothergill-Gilmore, L. A., Taylor, P., & Walkinshaw, M. D. (2002). Journal of Molecular Biology, 323, 859–869.
Choi, W. C., Kim, M. H., Ro, H. S., Ryu, S. R., Oh, T. K., & Lee, J. K. (2005). FEBS Letters, 579, 3461–3466.
Rahman, R. N. Z. R. A., Tejo, B. A., Basri, M., Rahman, M. B. A., Khan, F., Zain, S. M., et al. (2004). Applied Biochemistry and Biotechnology, 118, 11–20.
Banci, L., Bertini, I., Cramaro, F., Conte, R. D., & Viezzoli, M. S. (2003). Biochemistry, 42, 9543–9553.
James, J. J., Lakshmi, B. S., Seshasayee, A. S. N., & Gautam, P. (2007). FEBS Letters, 581, 4377–4383.
Tejo, B. A. (2004). Ph.D. thesis, Universiti Putra Malaysia, Malaysia.
Oelschlaeger, P., Schmid, R. D., & Pleiss, J. (2003). Biochemistry, 42, 8945–8956.
Betz, S. F., Raleigh, D. P., & DeGrado, W. F. (1993). Current Opinion in Structural Biology, 3, 601–610.
DeGrado, W. F. (1993). Nature, 365, 488–489.
Matsumura, H., Yamamoto, T., Leow, T. C., Mori, T., Salleh, A. B., Basri, M., et al. (2008). Proteins: Structure, Function, and Bioinformatics, 70, 592–598.
Acknowledgments
The authors would like to extend their gratitude to Prof. Dr. Yasushi Kai and Dr. Hiroyoshi Matsumura for the protein structure determination, Prof. Dr. Ali A. Moosavi-Movahedi and Dr. Bimo Ario Tejo for their opinions, and the Ministry of Science, Technology and Innovation Malaysia for financial support (09-02-04-001). A special thank also to Prof. Dr. Tan Soon Guan for checking the manuscript.
Author information
Authors and Affiliations
Consortia
Corresponding authors
Rights and permissions
About this article
Cite this article
Cheong, K.W., Leow, T.C., Rahman, R.N.Z.R.A. et al. Reductive Alkylation Causes the Formation of a Molten Globule-Like Intermediate Structure in Geobacillus zalihae Strain T1 Thermostable Lipase. Appl Biochem Biotechnol 164, 362–375 (2011). https://doi.org/10.1007/s12010-010-9140-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-010-9140-8