Skip to main content
Log in

The Correlations Between TCA-Glyoxalate Metabolite and Antibiotic Production of Streptomyces sp. M4018 Grown in Glycerol, Glucose, and Starch Mediums

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The alterations of organic acids citrate, α-ketoglutarate, succinate, fumarate, malate production together with isocitrate lyase activity as a glyoxalate shunt enzyme, and antibiotic production of Streptomyces sp M4018 were investigated in relation to changes in the glucose, glycerol and starch concentrations (5–20 g/L) after identification as a strain of Streptomyces hiroshimensis based on phenotypic and genotypic characteristics. The highest intracellular citrate and α-ketoglutarate levels in 20 g/l of glucose, glycerol, and starch mediums were 399.47 ± 4.78, 426.93 ± 6.40, 355.84 ± 5.38 ppm and 444.81 ± 5.12, 192.96 ± 2.26, 115.20 ± 2.87 ppm, respectively. The highest succinate, malate, and fumarate levels were also determined in 20 g/l of glucose medium as 548.9 ± 11.21, 596.15 ± 8.26, and 406.42 ± 6.59 ppm and the levels were significantly higher than the levels in glycerol and starch. Extracellular organic acid levels measured also showed significant correlation with carbon source concentrations by showing negative correlation with pH levels of the growth medium. The antibiotic production of Streptomyces sp. M4018 was also higher in glucose medium as was the case also for organic acids when compared with glycerol. On the other hand, there is no production in starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chater, K. F. (1993). Annual Review of Microbiology, 47, 685–713.

    Article  CAS  Google Scholar 

  2. Gerstmeir, R., Wendisch, V. F., Schnicke, S., Ruan, H., Farwick, M., & Reinscheid, D. (2003). Journal of Biotechnology, 104, 99–122.

    Article  CAS  Google Scholar 

  3. Naeimpoor, F., & Mavituna, F. (2000). Metabolic Engineering, 2, 140–148.

    Article  CAS  Google Scholar 

  4. Theobald, U., Mailinger, W., Baltes, M., Reuss, M., & Rizzi, M. (1997). Biotechnology and Bioengineering, 55, 305–316.

    Article  CAS  Google Scholar 

  5. Ferea, T. L., Botstein, D., Brown, P. O., & Rosenzweig, R. F. (1999). Proceedings of the National Academy of Science, 96, 9721–9726.

    Article  CAS  Google Scholar 

  6. Saito, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    Google Scholar 

  7. Zhu, M. M., Lawman, P. D., & Cameron, D. C. (2002). Biotechnology Progress, 18, 694–699.

    Article  CAS  Google Scholar 

  8. Virolle, M. J., & Bibb, M. J. (1988). Molecular Microbiology, 2, 197–208.

    Article  CAS  Google Scholar 

  9. Aristidou, A., & Penttial, M. (2000). Current Opinion in Biotechnology, 11, 187–198.

    Article  CAS  Google Scholar 

  10. Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Applied Microbiology and Biotechnology, 51, 545–552.

    Article  CAS  Google Scholar 

  11. Küster, E. (1959). Int Bull Bacteriol Nomen Taxon, 9, 97–104.

    Article  Google Scholar 

  12. Shirling, E. B., & Gottlieb, D. (1966). International Journal of Systematic Bacteriology, 16, 313–340.

    Article  Google Scholar 

  13. O’Donnell, A. G., Embley, T. M., & Goodfellow, M. (1993). Future of bacterial systematics. In: Handbook of new bacterial systematics (pp. 513–524). London: Academic Press.

  14. Staneck, J. L., & Roberts, G. D. (1974). Applied Microbiology, 28, 226–231.

    CAS  Google Scholar 

  15. Collins, M. D. (1985). Methods Microbiol, 18, 329–366.

    Article  CAS  Google Scholar 

  16. Wu, C., Lu, X., Oin, M., Wang, Y., & Ruan, J. (1989). Microbiology, 16, 76–178.

    Google Scholar 

  17. Sasser, M. (1990). In Z. Klement, K. Rudolph, & D. Sands (Eds.), Identification of bacteria through fatty acid analysis in methods in phytobacteriology (pp. 199–204). Budapest: Akademia Kiado.

    Google Scholar 

  18. Kämpfer, P., Kroppenstedt, R. M., & Dott, W. A. (1991). Journal of General Microbiology, 137, 1831–1891.

    Google Scholar 

  19. Gonzalez, J. M., & Saiz-Jimenez, C. A. (2005). Extremophiles, 9, 75–79.

    Article  CAS  Google Scholar 

  20. Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.

    Article  CAS  Google Scholar 

  21. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic Acid Techniques in Bacterial Systematics (pp 115–148). Chichester

  22. Chun, J., & Goodfellow, M. A. (1995). International Journal of Systematic Bacteriology, 45, 240–245.

    CAS  Google Scholar 

  23. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., et al. (2001). Lancet, 357, 1225–1240.

    Article  CAS  Google Scholar 

  24. Felsenstein, J. PHYLIP (1993). (Phylogenetic Inference Package), version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.

  25. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In: H.N. Munro (Ed.) Mammalian Protein Metabolism (pp 21–132), New York.

  26. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  27. Lechevalier, M. P., Prauser, H., Labeda, D. P., & Ruan, J. S. (1986). International Journal of Systematic Bacteriology, 36, 29–37.

    Article  Google Scholar 

  28. Dixon, G. H., & Kornberg, H. L. (1959). Biochem J, 72–79.

  29. Hatona, K., Nishii, T., & Kasai, H. (2003). International Journal of Systematic and Evolutionary Microbiology, 53, 1519–1529.

    Article  Google Scholar 

  30. Olano, C., Lombo, F., Mendez, C., & Salas, A. (2008). Metabolic Engineering, 10, 281–292.

    Article  CAS  Google Scholar 

  31. Gesheva, V., Ivanova, V., & Gesheva, R. (2005). Microbiological Research, 160, 243–248.

    Article  CAS  Google Scholar 

  32. Cocaign-Bousquet, M., Guyonvarch, A., & Lindley, N. D. (1996). Applied and Environmental Microbiology, 62, 429–436.

    CAS  Google Scholar 

  33. Papagianni, M., & Mattey, M. (2004). Process Biochemistry, 39, 1963–1970.

    Article  CAS  Google Scholar 

  34. Gokarn, R. R., Eiteman, M. A., & Altman, E. (2000). Applied and Environmental Microbiology, 66, 1844–1850.

    Article  CAS  Google Scholar 

  35. Peksel, A., Torres, N. V., Liu, J., Juneau, G., & Kubicek, C. P. (2002). Applied Microbiology and Biotechnology, 58, 157–163.

    Article  CAS  Google Scholar 

  36. Menzel, K., Zeng, A. P., Biebl, H., & Deckwer, W. D. (1996). Biotechnology and Bioengineering, 52, 549–560.

    Article  CAS  Google Scholar 

  37. Henry, L., George, N. B., & San, K. Y. (2005). Metabolic Engineering, 7, 116–127.

    Article  Google Scholar 

  38. Connett, R. J., & Blum, J. J. (1971). Biochemistry, 10, 3299–3309.

    Article  CAS  Google Scholar 

  39. Wang, Z. X., Bramer, C. O., & Steinbüchel, A. (2003). FEMS Microbiology Letters, 228, 63–71.

    Article  CAS  Google Scholar 

  40. Surowitz, K. G., & Pfister, R. (1985). Canadian Journal of Microbiology, 31, 702–706.

    Article  CAS  Google Scholar 

  41. AyarKayalı, H., & Tarhan, L. (2006). Enzyme and Microbial Techn, 38, 727–734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leman Tarhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarhan, L., Kayalı, H.A., Sazak, A. et al. The Correlations Between TCA-Glyoxalate Metabolite and Antibiotic Production of Streptomyces sp. M4018 Grown in Glycerol, Glucose, and Starch Mediums. Appl Biochem Biotechnol 164, 318–337 (2011). https://doi.org/10.1007/s12010-010-9137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9137-3

Keywords

Navigation