Applied Biochemistry and Biotechnology

, Volume 164, Issue 2, pp 220–237 | Cite as

Modulation of Triterpene Saponin Production: In Vitro Cultures, Elicitation, and Metabolic Engineering

Article

Abstract

Saponins are secondary metabolites that are widely distributed in the plant kingdom and are often the active components in medicinal herbs. Hence, saponins have a potential for the pharmaceutical industry as antibacterial, virucidal, anti-inflammatory, and anti-leishmanial drugs. However, their commercial application is often hindered because of practical problems, such as low and variable yields and limited availability of natural resources. In vitro cultures provide an alternative to avoid problems associated with field production; they offer a system in which plants are clonally propagated and yield is not affected by environmental changes. Additionally, treatment of in vitro cultures with elicitors such as methyl jasmonate may increase the production of saponins up to six times. In vitro cultures are amenable to metabolic engineering by targeting specific genes to enhance saponin production or drive production towards one specific class of saponins. Hitherto, this approach is not yet fully explored because only a limited number of saponin biosynthesis genes are identified. In this paper, we review recent studies on in vitro cultures of saponin-producing plants. The effect of elicitation on saponin production and saponin biosynthesis genes is discussed. Finally, recent research efforts on metabolic engineering of saponins will also be presented.

Keywords

Triterpene saponins Saponin biosynthesis In vitro culture Elicitation Metabolic engineering 

References

  1. 1.
    Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Phytochemistry, 68, 275–297.CrossRefGoogle Scholar
  2. 2.
    Liu, J. K., & Henkel, T. (2002). Current Medicinal Chemistry, 9, 1483–1485.Google Scholar
  3. 3.
    Wu, J. Y., & Zhong, J. J. (1999). Journal of Biotechnology, 68, 89–99.CrossRefGoogle Scholar
  4. 4.
    Liang, Y., & Zhao, S. (2008). Plant Biology, 10, 415–421.CrossRefGoogle Scholar
  5. 5.
    Dang, H. X., Chen, Y., Liu, X. M., Wang, Q., Wang, L. W., Jia, W., et al. (2009). Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 1417–1424.CrossRefGoogle Scholar
  6. 6.
    Luo, J. Z., & Luo, L. G. (2009). Evidence-Based Complementary and Alternative Medicine, 6, 423–427.CrossRefGoogle Scholar
  7. 7.
    Jia, L., & Zhao, Y. Q. (2009). Current Medicinal Chemistry, 16, 2475–2484.CrossRefGoogle Scholar
  8. 8.
    Jia, L., Zhao, Y. Q., & Liang, X. J. (2009). Current Medicinal Chemistry, 16, 2924–2942.CrossRefGoogle Scholar
  9. 9.
    Lu, J. M., Yao, Q. Z., & Chen, C. Y. (2009). Current Vascular Pharmacology, 7, 293–302.CrossRefGoogle Scholar
  10. 10.
    Francis, G., Kerem, Z., Makkar, H. P., & Becker, K. (2002). The British Journal of Nutrition, 88, 587–605.CrossRefGoogle Scholar
  11. 11.
    Morrissey, J. P., & Osbourn, A. E. (1999). Microbiology and Molecular Biology Reviews, 63, 708.Google Scholar
  12. 12.
    Gonzalez-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M. S., Malouin, F., & Bouarab, K. (2009). International Journal of Molecular Sciences, 10, 3400–3419.CrossRefGoogle Scholar
  13. 13.
    Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J., & Osbourn, A. E. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 12923–12928.CrossRefGoogle Scholar
  14. 14.
    Trojanowska, M. R., Osbourn, A. E., Daniels, M. J., & Threlfall, D. R. (2001). Phytochemistry, 56, 121–129.CrossRefGoogle Scholar
  15. 15.
    Mylona, P., Owatworakit, A., Papadopoulou, K., Jenner, H., Qin, B., Findlay, K., et al. (2008). The Plant Cell, 20, 201–212.CrossRefGoogle Scholar
  16. 16.
    Bowyer, P., Clarke, B. R., Lunness, P., Daniels, M. J., & Osbourn, A. E. (1995). Science, 267, 371–374.CrossRefGoogle Scholar
  17. 17.
    Sacchettini, J. C., & Poulter, C. D. (1997). Science, 277, 1788–1789.CrossRefGoogle Scholar
  18. 18.
    Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M. H., & Bacher, A. (1998). Chemistry & Biology, 5, R221–233.CrossRefGoogle Scholar
  19. 19.
    Dubey, V. S., Bhalla, R., & Luthra, R. (2003). Journal of Biosciences, 28, 637–646.CrossRefGoogle Scholar
  20. 20.
    Shibuya, M., Katsube, Y., Otsuka, M., Zhang, H., Tansakul, P., Xiang, T., et al. (2009). Plant Physiology and Biochemistry, 47, 26–30.CrossRefGoogle Scholar
  21. 21.
    Punja, Z. K., Feeney, M., Schluter, C., & Tautorus, T. (2004). In Vitro Cellular & Developmental Biology-Plant, 40, 329–338.CrossRefGoogle Scholar
  22. 22.
    Choi, Y. E., Jeong, J. H., & Shin, C. K. (2003). Plant Cell, Tissue and Organ Culture, 72, 229–235.CrossRefGoogle Scholar
  23. 23.
    Okrslar, V., Plaper, I., Kovac, M., Erjavec, A., Obermajer, T., Rebec, A., et al. (2007). In Vitro Cellular & Developmental Biology-Plant, 43, 644–651.CrossRefGoogle Scholar
  24. 24.
    Paek, K. Y., Murthy, H. N., Hahn, E. J., & Zhong, J. J. (2009). Biotechnology in China I, 113, 151–176.CrossRefGoogle Scholar
  25. 25.
    Langhansova, L., Marsik, P., & Vanek, T. (2005). Biologia Plantarum, 49, 463–465.CrossRefGoogle Scholar
  26. 26.
    Mangas, S., Moyano, E., Osuna, L., Cusido, R. M., Bonfill, M., & Palazon, J. (2008). Biotechnological Letters, 30, 1853–1859.CrossRefGoogle Scholar
  27. 27.
    Herold, M. C., & Henry, M. (2001). Biotechnology Letters, 23, 335–337.CrossRefGoogle Scholar
  28. 28.
    Arroo, R. R. J., Develi, A., Meijers, H., Vandewesterlo, E., Kemp, A. K., Croes, A. F., et al. (1995). Physiologia Plantarum, 93, 233–240.CrossRefGoogle Scholar
  29. 29.
    Choi, Y. E., Yang, D. C., Yoon, E. S., & Choi, K. T. (1999). Plant Cell Reports, 18, 493–499.CrossRefGoogle Scholar
  30. 30.
    Choi, Y. E., Yang, D. C., Park, J. C., Soh, W. Y., & Choi, K. T. (1998). Plant Cell Reports, 17, 544–551.CrossRefGoogle Scholar
  31. 31.
    Vasconsuelo, A., & Boland, R. (2007). Plant Science, 172, 861–875.CrossRefGoogle Scholar
  32. 32.
    Creelman, R. A., & Mullet, J. E. (1997). Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381.CrossRefGoogle Scholar
  33. 33.
    Hu, F. X., & Zhong, J. J. (2008). Process Biochemistry, 43, 113–118.CrossRefGoogle Scholar
  34. 34.
    Raskin, I. (1992). Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.CrossRefGoogle Scholar
  35. 35.
    Ali, M. B., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2006). Plant Cell Reports, 25, 613–620.CrossRefGoogle Scholar
  36. 36.
    Zhong, J. J., & Zhang, Z. Y. (2005). Engineering in Life Sciences, 5, 471–474.CrossRefGoogle Scholar
  37. 37.
    Wang, W., Zhang, Z. Y., & Zhong, J. J. (2005). Applied Microbiology and Biotechnology, 67, 752–758.CrossRefGoogle Scholar
  38. 38.
    Hu, F. X., & Zhong, J. J. (2007). Journal of Bioscience and Bioengineering, 104, 513–516.CrossRefGoogle Scholar
  39. 39.
    Shabani, L., Ehsanpour, A. A., Asghari, G., & Emami, J. (2009). Russian Journal of Plant Physiology, 56, 621–626.CrossRefGoogle Scholar
  40. 40.
    Pereira, P. S., Ticli, F. K., Franca, S. D. C., de Souza Breves, C. M., & Lourenco, M. V. (2007). Quimica Nova, 30, 1849–1852.Google Scholar
  41. 41.
    Kim, O. T., Kim, M. Y., Hong, M. H., Ahn, J. C., & Hwang, B. (2004). Plant Cell Reports, 23, 339–344.CrossRefGoogle Scholar
  42. 42.
    Suzuki, H., Achnine, L., Xu, R., Matsuda, S. P. T., & Dixon, R. A. (2002). The Plant Journal, 32, 1033–1048.CrossRefGoogle Scholar
  43. 43.
    Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., et al. (2005). Planta, 220, 696–707.CrossRefGoogle Scholar
  44. 44.
    Kuzuyama, T. (2002). Bioscience, Biotechnology, and Biochemistry, 66, 1619–1627.CrossRefGoogle Scholar
  45. 45.
    Kim, Y. S., Han, J. Y., Lim, S., & Choi, Y. E. (2009). Journal of Medicinal Plants Research, 3, 1270–1276.Google Scholar
  46. 46.
    Kim, O. T., Kim, S. H., Ohyama, K., Muranaka, T., Choi, Y. E., Lee, H. Y., et al. (2010). Plant Cell Reports, 29, 403–411.CrossRefGoogle Scholar
  47. 47.
    Abe, I., Rohmer, M., & Prestwich, G. D. (1993). Chemical Reviews, 93, 2189–2206.CrossRefGoogle Scholar
  48. 48.
    Hayashi, H., Hirota, A., Hiraoka, N., & Ikeshiro, Y. (1999). Biological & Pharmaceutical Bulletin, 22, 947–950.Google Scholar
  49. 49.
    Devarenne, T. P., Ghosh, A., & Chappell, J. (2002). Plant Physiology, 129, 1095–1106.CrossRefGoogle Scholar
  50. 50.
    Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., Kim, Y. S., In, J. G., et al. (2004). Plant & Cell Physiology, 45, 976–984.CrossRefGoogle Scholar
  51. 51.
    Kim, O. T., Seong, N. S., Kim, M. Y., & Hwang, B. (2005). Journal of Plant Biology, 48, 263–269.CrossRefGoogle Scholar
  52. 52.
    Akamine, S., Nakamori, K., Chechetka, S. A., Banba, M., Umehara, Y., Kouchi, H., et al. (2003). Biochimica Et Biophysica Acta-Gene Structure and Expression, 1626, 97–101.CrossRefGoogle Scholar
  53. 53.
    Seo, J. W., Jeong, J. H., Shin, C. G., Lo, S. C., Han, S. S., Yu, K. W., et al. (2005). Phytochemistry, 66, 869–877.CrossRefGoogle Scholar
  54. 54.
    Uchida, H., Yamashita, H., Kajikawa, M., Ohyama, K., Nakayachi, O., Sugiyama, R., et al. (2009). Planta, 229, 1243–1252.CrossRefGoogle Scholar
  55. 55.
    Rasbery, J. M., Shan, H., LeClair, R. J., Norman, M., Matsuda, S. P. T., & Bartel, B. (2007). The Journal of Biological Chemistry, 282, 17002–17013.CrossRefGoogle Scholar
  56. 56.
    Han, J. Y., In, J. G., Kwon, Y. S., & Choi, Y. E. (2010). Phytochemistry, 71, 36–46.CrossRefGoogle Scholar
  57. 57.
    Kushiro, T., Shibuya, M., & Ebizuka, Y. (1998). Towards Natural Medicine Research in the 21st Century, 1157, 421–427.Google Scholar
  58. 58.
    Morita, M., Shibuya, M., Kushiro, T., Masuda, K., & Ebizuka, Y. (2000). European Journal of Biochemistry, 267, 3453–3460.CrossRefGoogle Scholar
  59. 59.
    Hayashi, H., Huang, P. Y., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., et al. (2001). Biological & Pharmaceutical Bulletin, 24, 912–916.CrossRefGoogle Scholar
  60. 60.
    Haralampidis, K., Bryan, G., Qi, X., Papadopoulou, K., Bakht, S., Melton, R., et al. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 13431–13436.CrossRefGoogle Scholar
  61. 61.
    Iturbe-Ormaetxe, I., Haralampidis, K., Papadopoulou, K., & Osbourn, A. E. (2003). Plant Molecular Biology, 51, 731–743.CrossRefGoogle Scholar
  62. 62.
    Zhang, H., Shibuya, M., Yokota, S., & Ebizuka, Y. (2003). Biological & Pharmaceutical Bulletin, 26, 642–650.CrossRefGoogle Scholar
  63. 63.
    Kajikawa, M., Yamato, K. T., Fukuzawa, H., Sakai, Y., Uchida, H., & Ohyama, K. (2005). Phytochemistry, 66, 1759–1766.CrossRefGoogle Scholar
  64. 64.
    Meesapyodsuk, D., Balsevich, J., Reed, D. W., & Covello, P. S. (2007). Plant Physiology, 143, 959–969.CrossRefGoogle Scholar
  65. 65.
    Cammareri, M., Consiglio, M. F., Pecchia, P., Corea, G., Lanzotti, V., Ibeas, J. I., et al. (2008). Plant Science, 175, 255–261.CrossRefGoogle Scholar
  66. 66.
    Scholz, M., Lipinski, M., Leupold, M., Luftmann, H., Harig, L., Ofir, R., et al. (2009). Phytochemistry, 70, 517–522.CrossRefGoogle Scholar
  67. 67.
    Liu, Y. L., Cai, Y. F., Zhao, Z. J., Wang, J. F., Li, J., Xin, W., et al. (2009). Biological & Pharmaceutical Bulletin, 32, 818–824.CrossRefGoogle Scholar
  68. 68.
    Confalonieri, M., Cammareri, M., Biazzi, E., Pecchia, P., Fevereiro, M. P. S., Balestrazzi, A., et al. (2009). Plant Biotechnology Journal, 7, 172–182.CrossRefGoogle Scholar
  69. 69.
    Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M., et al. (2004). Biological & Pharmaceutical Bulletin, 27, 1086–1092.CrossRefGoogle Scholar
  70. 70.
    Ohnishi, T., Yokota, T., & Mizutani, M. (2009). Phytochemistry, 70, 1918–1929.CrossRefGoogle Scholar
  71. 71.
    Shibuya, M., Hoshino, M., Katusbe, Y., Hayashi, H., Kushiro, T., & Ebizuka, Y. (2006). The FEBS Journal, 273, 948–959.CrossRefGoogle Scholar
  72. 72.
    Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., et al. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 14204–14209.CrossRefGoogle Scholar
  73. 73.
    Qi, X., Bakht, S., Qin, B., Leggett, M., Hemmings, A., Mellon, F., et al. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 18848–18853.CrossRefGoogle Scholar
  74. 74.
    Mizutani, M., & Ohta, D. (2010). Annual Review of Plant Biology, 61, 291–315.CrossRefGoogle Scholar
  75. 75.
    Phillips, D. R., Rasbery, J. M., Bartel, B., & Matsuda, S. P. T. (2006). Current Opinion in Plant Biology, 9, 305–314.CrossRefGoogle Scholar
  76. 76.
    Xu, R., Fazio, G. C., & Matsuda, S. P. T. (2004). Phytochemistry, 65, 261–291.CrossRefGoogle Scholar
  77. 77.
    Achnine, L., Huhman, D. V., Farag, M. A., Sumner, L. W., Blount, J. W., & Dixon, R. A. (2005). The Plant Journal, 41, 875–887.CrossRefGoogle Scholar
  78. 78.
    Naoumkina, M. A., Modolo, L. V., Huhman, D. V., Urbanczyk-Wochniak, E., Tang, Y. H., Sumner, L. W., et al. (2010). The Plant Cell, 22, 850–866.CrossRefGoogle Scholar
  79. 79.
    Shibuya, M., Nishimura, K., Yasuyama, N., & Ebizuka, Y. (2010). FEBS Letters, 584, 2258–2264.CrossRefGoogle Scholar
  80. 80.
    Vogt, T., & Jones, P. (2000). Trends in Plant Science, 5, 380–386.CrossRefGoogle Scholar
  81. 81.
    Modolo, L. V., Blount, J. W., Achnine, L., Naoumkina, M. A., Wang, X. Q., & Dixon, R. A. (2007). Plant Molecular Biology, 64, 499–518.CrossRefGoogle Scholar
  82. 82.
    Zhang, W. J., & Tang, Y. (2008). Journal of Medicinal Chemistry, 51, 2629–2633.CrossRefGoogle Scholar
  83. 83.
    Floss, H. G. (2006). Journal of Biotechnology, 124, 242–257.CrossRefGoogle Scholar
  84. 84.
    Julsing, M. K., Koulman, A., Woerdenbag, H. J., Quax, W. J., & Kayser, O. (2006). Biomolecular Engineering, 23, 265–279.CrossRefGoogle Scholar
  85. 85.
    Menzella, H. G., & Reeves, C. D. (2007). Current Opinion in Microbiology, 10, 238–245.CrossRefGoogle Scholar
  86. 86.
    Horinouchi, S. (2009). Current Opinion in Chemical Biology, 13, 197–204.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Plant Production, Faculty of Bioscience EngineeringUniversity of GhentGhentBelgium

Personalised recommendations