Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 115–124 | Cite as

Simultaneous Recovery of Lipids and Proteins by Enzymatic Hydrolysis of Fish Industry Waste Using Different Commercial Proteases

  • Swapna C. Hathwar
  • B. Bijinu
  • Amit Kumar Rai
  • Bhaskar NarayanEmail author


Four different commercial proteases (Protease-P-Amano6, Alcalase®, Protex 7L®, and Neutrase®) were evaluated for recovering lipids and protein simultaneously by hydrolysis. Fungal protease (Protease-P-Amano6) resulted in maximum lipid recovery (74.9%) followed by alcalase (61.7%). Peroxide value (PV; milli-equivalents of oxygen per kilogram) in the oil recovered after hydrolysis was 40.48 compared to 8.7 in lipids from fresh fish viscera. However, addition of tertiary butyl hydroxyl quinine at 200 ppm level maintained the PV of oil recovered by hydrolysis closer to oil from fresh waste. Degree of hydrolysis was the highest in case of fungal protease (49.1%) where neutrase resulted in higher total antioxidant activity (micrograms of ascorbic acid equivalents per milligram protein) of 34.4. Protein hydrolysate prepared using fungal protease had the higher diphenylpicrylhydrazyl radical scavenging activity as compared to those from other enzymes. The results indicate the utility of commercial proteases in providing an ecofriendly and feasible solution for reducing disposal problems associated with fish processing.


Fish visceral waste Enzymatic hydrolysis Lipids Proteins Commercial proteases 



Authors thank Department of Biotechnology, Govt. of India for partial funding of this work through Grant ##BT/PR 9474/AAQ/03/345/2007. Authors place on record their thanks to Dr. V Prakash, Director, CFTRI for encouragement and permission to publish the work.


  1. 1.
    FAO (2010). Year book of fishery statistics—latest summary of tables. Available at; last accessed on May 18, 2010.
  2. 2.
    Bhaskar, N., Sachindra, N. M., Suresh, P. V., Mahendrakar, N. S. (2010). Microbial reclamation of fish industry bi-products. In: D. Montet & RC. Ray (Eds.), Aquaculture microbiology (pp. 248–275). Science, Enfield.Google Scholar
  3. 3.
    Sachindra, N. M., Bhaskar, N., Hosokawa, M., & Miyashita, K. (2010). Value addition to fish processing by-products. In C. Alasalvar, K. Miyashita, U. Wanasundara, & F. Shahidi (Eds.), Seafood quality, safety and health applications (pp. 390–401). UK: Blackwell.Google Scholar
  4. 4.
    Vidotti, R. M., Viegas, E. M. M., & Careiro, D. J. (2003). Amino acid composition of processed fish silage using different raw materials. Animal Feed Science and Technology, 105, 199–204.CrossRefGoogle Scholar
  5. 5.
    Swapna, H. C., Amit, K. R., Bhaskar, N., & Sachindra, N. M. (2010). Lipid classes and fatty acid profile of selected Indian fresh water fishes. Journal of Food Science and Technology, 47, 394–400.CrossRefGoogle Scholar
  6. 6.
    Kim, S. K., & Mendis, E. (2006). Bioactive compounds from marine processing by-products—a review. Food Research International, 39, 383–393.CrossRefGoogle Scholar
  7. 7.
    Song, L., Li, T., Yu, R., Yan, C., Ren, S., & Zhao, Y. (2008). Antioxidant activities of hydrolysates of Arca subcrenata prepared with three proteases. Marine Drugs, 6, 607–619.CrossRefGoogle Scholar
  8. 8.
    Sikoroski, Z. E., & Naczk, M. (1981). Modification of technological properties of fish protein concentrate. CRC Critical Review Food Science and Nutrition, 14, 201–230.CrossRefGoogle Scholar
  9. 9.
    Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 59, 76–79.CrossRefGoogle Scholar
  10. 10.
    Kristinssons, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40, 43–81.CrossRefGoogle Scholar
  11. 11.
    Bhaskar, N., Benila, T., Radha, C., & Lalitha, R. G. (2008). Optimization of enzymatic hydrolysis of visceral waste proteins of catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99, 335–343.CrossRefGoogle Scholar
  12. 12.
    Bhaskar, N., & Mahendrakar, N. S. (2008). Protein hydrolysate from visceral waste proteins of catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology, 99, 4105–4111.CrossRefGoogle Scholar
  13. 13.
    Slizyte, R., Dauksas, E., Falch, E., Storro, I., & Rustad, T. (2005). Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry, 40, 2021–2033.CrossRefGoogle Scholar
  14. 14.
    Grodji, A. G., Michel, L., Jacques, F., & Michel, P. (2006). Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology, 108, 766–775.CrossRefGoogle Scholar
  15. 15.
    AOAC. (2000). Official methods of analysis (17th ed.). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  16. 16.
    Guerard, F., Dufosse, L., De, L., Broise, D., & Binet, A. (2001). Enzymatic hydrolysis of proteins from yellowfish tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis. B, Enzymatic, 11, 1051–1059.CrossRefGoogle Scholar
  17. 17.
    Amit, K. R., Swapna, H. C., Bhaskar, N., Halami, P. M., & Sachindra, N. M. (2010). Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme and Microbial Technology, 46, 9–13.CrossRefGoogle Scholar
  18. 18.
    Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.Google Scholar
  19. 19.
    Amit, K. R., Bhaskar, N., Halami, P. M., Indirani, K., Suresh, P. V., & Mahendrakar, N. S. (2009). Characterisation and application of a native lactic acid bacterium isolated from tannery fleshings for the fermentative bioconversion of tannery fleshing. Applied Microbiology and Biotechnology, 83, 757–766.CrossRefGoogle Scholar
  20. 20.
    Statsoft. (1999). Statistica for Windows. Tulsa: Statsoft.Google Scholar
  21. 21.
    Sathivel, S., Prinyawiwatkul, W., Grimm, C. C., King, J. M., & Lloyd, S. (2002). FA composition of crude oil recovered from catfish viscera. Journal of the American Oil Chemist’s Society, 78, 989–992.CrossRefGoogle Scholar
  22. 22.
    Klomklao, S., Benjakul, S., & Visessanguan, W. (2004). Comparative studies on proteolytic activity of splenic extract from three tuna species commonly used in Thailand. Journal of Food Biochemistry, 28, 355–372.CrossRefGoogle Scholar
  23. 23.
    Ahmed, J., & Mahendrakar, N. S. (1996). Autolysis and rancidity development in fish viscera during fermentation. Bioresource Technology, 58, 247–251.CrossRefGoogle Scholar
  24. 24.
    Shon, M. Y., Kim, T. H., & Sung, N. J. (2003). Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chemistry, 82, 593–597.CrossRefGoogle Scholar
  25. 25.
    Sachindra, N. M., & Bhaskar, N. (2008). In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresource Technology, 99, 9013–9016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Swapna C. Hathwar
    • 1
  • B. Bijinu
    • 1
  • Amit Kumar Rai
    • 1
  • Bhaskar Narayan
    • 1
    Email author
  1. 1.Department of Meat Fish and Poultry TechnologyCentral Food Technological Research Institute (CFTRI), CSIRMysoreIndia

Personalised recommendations