Applied Biochemistry and Biotechnology

, Volume 164, Issue 1, pp 89–102 | Cite as

Enzymatic Hydrolysis of Polylactic Acid Fiber

  • So Hee Lee
  • Wha Soon SongEmail author


This study investigated the optimization of the enzymatic processing conditions for polylactic acid (PLA) fibers using enzymes consisting of lipases originating from different sources. The hydrolytic activity was evaluated taking into consideration the pH, temperature, enzyme concentration, and treatment time. The structural change of the PLA fibers was measured in the optimal treatment conditions. PLA fiber hydrolysis by lipases was maximized for lipase from Aspergillus niger at 40 °C for 60 min at pH 7.5 with 60% (owf) concentration, for lipase from Candida cylindracea at 40 °C for 120 min at pH 8.0 with 70% (owf) concentration, and for lipase from Candida rugosa at 45 °C for 120 min at pH 8.0 with 70% (owf) concentration. There was a change in protein absorbance of the treatment solution before and after all lipase treatments. The analyses of the chemical structure change and structural properties of the PLA due to lipase treatment was confirmed by tensile strength, differential scanning calorimetry, wide-angle X-ray scattering diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy.


Polylactic acid PLA Fiber Hydrolysis Lipase 


  1. 1.
    Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). Poly(lactic acid) fibers. In R. S. Blackburn (Ed.), Biodegradable and sustainable fibres (Vol. 6, pp. 191–218). Cambridge: Woodhead Publishing Limited.Google Scholar
  2. 2.
    Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Advanced materials, 12, 1841–1846.CrossRefGoogle Scholar
  3. 3.
    Sawada, K., Urakawa, H., & Ueda, M. (2007). Textile Research Journal, 77, 901–905.CrossRefGoogle Scholar
  4. 4.
    Yamaguchi, K. (2005). Technical materials. Seoul, Korea: Kotiti.Google Scholar
  5. 5.
    Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Progress in polymer science, 35, 338–356.CrossRefGoogle Scholar
  6. 6.
    Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Composites Science and Technology, 63, 1317–1324.CrossRefGoogle Scholar
  7. 7.
    Kim, J. (2005). Journal of Industrial Technology, 13, 35–49.Google Scholar
  8. 8.
    Reddy, N., Nama, D., & Yang, Y. (2008). Polymer Degradation and Stability, 93, 233–241.CrossRefGoogle Scholar
  9. 9.
    Guebitz, G. M., & Cavaco-Paulo, A. (2007). Trends in Biotechnology, 26, 32–38.CrossRefGoogle Scholar
  10. 10.
    Cavaco-Paulo, A., & Guebitz, G. M. (2003). Textile Processing with Enzymes. Washington D.C: CRC.CrossRefGoogle Scholar
  11. 11.
    Lee, S. H., & Song, W. S. (2010). Fibers and Polymers, 11, 54–59.CrossRefGoogle Scholar
  12. 12.
    Lee, S. H., Kim, H. R., & Song, W. S. (2009). Fibers and Polymers, 10, 802–806.CrossRefGoogle Scholar
  13. 13.
    Kim, H. R., & Song, W. S. (2006). Fibers and Polymers, 7, 339–343.CrossRefGoogle Scholar
  14. 14.
    Lee, S. H., Kim, H. R., Lee, B. H., & Song, W. S. (2010). Textile Science and Engineering, 47, 212–221.Google Scholar
  15. 15.
    Lee, S. H., & Song, W. S. (2009). KSCT 2009 Conference and Exhibition. Korea: Seoul.Google Scholar
  16. 16.
    Lee, K. S. (2007). Enzyme theory and application. Seoul: Daihaks Publishing Company.Google Scholar
  17. 17.
    Cam, D., Hyon, S. H., & Ikada, Y. (1995). Biomaterials, 16, 833–843.CrossRefGoogle Scholar
  18. 18.
    Li, B. H., & Yang, M. C. (2006). Polymers for Advanced Technologies, 17, 439–443.CrossRefGoogle Scholar
  19. 19.
    Cai, H., Dave, V., Gross, R. A., & McCarthy, S. P. (1996). Journal of Polymer Science. Part B: Polymer Physics, 34, 2701–2708.CrossRefGoogle Scholar
  20. 20.
    Lin, L. H., Liu, H. J., & Yu, N. K. (2007). Journal of Applied Polymer Science, 106, 260–266.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Clothing and TextilesSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations