Skip to main content

Plasma-Assisted Pretreatment of Wheat Straw

Abstract

O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content and milled particle size (the extent to which the wheat straw was milled) were investigated and optimized. The developed methodology offered the advantage of a simple and relatively fast (0.5–2 h) pretreatment allowing a dry matter concentration of 45–60%. FTIR measurements did not suggest any structural effects on cellulose and hemicellulose by the O3 treatment. The cost and the energy consumption for lignin degradation of 100 g of wheat straw were calculated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Biofuels in the European Union. A vision for 2030 and beyond. Available from: http://ec.europa.eu/research/energy/pdf/biofuels_vision_2030_en.pdf. Accessed May 15, 2009

  2. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  3. Mosier, N., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  4. Cuomo, J. et al. (2007) WO 2007/136843 A2

  5. Vidal, P. F., & Molinier, J. (1988). Biomass, 16, 1–17.

    Article  CAS  Google Scholar 

  6. Lasry, T., et al. (1989). Analusis, 18, 192–199.

    Google Scholar 

  7. Kratzl, K., et al. (1976). Tappi, 59, 86–87.

    CAS  Google Scholar 

  8. March, J. (1992). Advanced organic chemistry. Reactions mechanisms, and stuctures (4th ed.). Chichester: Wiley.

    Google Scholar 

  9. Contreras, S., et al. (2002). Bioresource Technology, 100, 1608–1613.

    Google Scholar 

  10. Garcia-Cubero, M. T. (2009). Bioresource Technology, 100, 1608–1613.

    Article  CAS  Google Scholar 

  11. Osawa, Z., et al. (1963). Tappi, 46, 84–88.

    CAS  Google Scholar 

  12. Binder, A., et al. (1980). European Journal of Applied Microbiology and Biotechnology, 11, 1–5.

    Article  CAS  Google Scholar 

  13. Ben-Ghedalia, B., et al. (1980). Journal of the Science of Food and Agriculture, 31, 1337–1342.

    Article  CAS  Google Scholar 

  14. Silverstein, R. A., et al. (2007). Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  15. Quesada, J., et al. (1999). Journal of Wood Chemistry and Technology, 19, 115–137.

    Article  CAS  Google Scholar 

  16. Kaar, W. E., et al. (1991). Journal of Wood Chemistry and Technology, 11, 447–463.

    Article  CAS  Google Scholar 

  17. Thygesen, A., et al. (2005). Cellulose, 12, 563–576.

    Article  CAS  Google Scholar 

  18. Varga, E., et al. (2004). Applied Biochemistry and Biotechnology, 104, 37–50.

    Article  Google Scholar 

  19. Thygesen, A., et al. (2003). Enzyme and Microbial Technology, 32, 606–615.

    Article  CAS  Google Scholar 

  20. Griffith, P. R., et al. (1986). J. A. fourier transform infrared spectrometry. New York: Wiley.

    Google Scholar 

  21. Leipold, F., et al. (2006). Fuel, 85, 1383–1388.

    Article  CAS  Google Scholar 

  22. Orphal, J. (2003). Journal of Photochemistry and Photobiology A, 157, 185–209.

    Article  CAS  Google Scholar 

  23. Dudley, H., & Fleming, I. (1995). Spectroscopy methods in organic chemistry (5th ed.). London: McGraw-Hill.

    Google Scholar 

  24. Belgacem, M. N., & Gandini, A. (2008). Monomers, polymers and composites from renewable resources (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  25. Sung, Y.-M., & Sakoda, T. (2005). Surface and Coatings Technology, 197, 148–153.

    Article  CAS  Google Scholar 

  26. Hayashi, N., et al. (1989). Mokuzai Gakkaishi, 35, 521–529.

    CAS  Google Scholar 

  27. Bono, J. J., et al. (1985). Applied Microbiology and Biotechnology, 22, 227–234.

    Article  CAS  Google Scholar 

  28. Tock, R. W., et al. (1981). Industrial & Engineering Chemistry Product Research and Development, 21, 101–106.

    Article  Google Scholar 

  29. Neely, W. C. (1984). Biotechnology and Bioengineering, XXVI, 59–65.

    Article  Google Scholar 

  30. Hansen, N. M. L. (2008). Biomacromolecules, 9, 1493–1505.

    Article  CAS  Google Scholar 

  31. Gatenholm, P. et al. (2008). US Patent no. 7427643 B2.

  32. Dolenko, A. J., & Clarke, M. R. (1978). Forest Products Journal, 28, 41–46.

    CAS  Google Scholar 

  33. Demirbaş, A. (2002). Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 24, 891–897.

    Article  Google Scholar 

Download references

Acknowledgement

We want to thank Dr. David Plackett for his valuable comments on the FTIR and particle size measurements as well as Annette Eva Jensen, Ingelis Larsen, and Tomas Fernqvist for technical assistance. This project was funded by the Danish Energy Foundation in Copenhagen, Denmark (EFP07, J.nr.33033-0043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Schultz-Jensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schultz-Jensen, N., Leipold, F., Bindslev, H. et al. Plasma-Assisted Pretreatment of Wheat Straw. Appl Biochem Biotechnol 163, 558–572 (2011). https://doi.org/10.1007/s12010-010-9062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9062-5

Keywords

  • Pretreatment method
  • Wheat straw
  • Lignin
  • Plasma
  • Discharge
  • Biofuel
  • Sustainable energy
  • Ozonisation