Applied Biochemistry and Biotechnology

, Volume 163, Issue 4, pp 540–546 | Cite as

Replacing Synthetic with Microbial Surfactants as Collectors in the Treatment of Aqueous Effluent Produced by Acid Mine Drainage, Using the Dissolved Air Flotation Technique

  • Carlyle T. B. Menezes
  • Erilson C. Barros
  • Raquel D. Rufino
  • Juliana M. Luna
  • Leonie A. SarubboEmail author


Dissolved air flotation (DAF) is a well-established separation process employing micro bubbles as a carrier phase. The application of this technique in the treatment of acid mine drainage, using three yeast biosurfactants as alternative collectors, is hereby analyzed. Batch studies were carried out in a 50-cm high acrylic column with an external diameter of 2.5 cm. High percentages (above 94%) of heavy metals Fe(III) and Mn(II) were removed by the biosurfactants isolated from Candida lipolytica and Candida sphaerica and the values were found to be similar to those obtained with the use of the synthetic sodium oleate surfactant. The DAF operation with both surfactant and biosurfactants, achieved acceptable turbidity values, in accordance with Brazilian standard limits. The best ones were obtained by the biosurfactant from C. lipolytica, which reached 4.8 NTU. The results obtained with a laboratory synthetic effluent were also satisfactory. The biosurfactants removed almost the same percentages of iron, while the removal percentages of manganese were slightly higher compared with those obtained in the acid mine drainage effluent. They showed that the use of low-cost biosurfactants as collectors in the DAF process is a promising technology for the mining industries.


Biosurfactants Flotation Effluent treatment Heavy metals Candida Low-cost substrate 



This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are grateful to Instituto de pesquisas Ambientais e Tecnológicas (IPAT), from Universidade do Extremo Sul Catarinense, Brazil and to Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB) laboratories, from Universidade Católica de Pernambuco, Brazil.


  1. 1.
    Besser, J. M., Brumbaugh, W. G., Allert, A. L., Poulton, B. C., Schmitt, C. J., & Ingersoll, C. G. (2009). Ecotoxicology and Environmental Safety, 72, 516–526.CrossRefGoogle Scholar
  2. 2.
    Singer, P. E., & Stumm, W. (1970). Science, 167, 1121–1123.CrossRefGoogle Scholar
  3. 3.
    Kontopoulos, A. (1998). Acid Mine Drainage Control. In S. H. Castro, F. Vergara, & M. A. Sánchez (Eds.), Effluent Treatment in the Mining Industry (pp. 57–118). Chile: University of Concepción.Google Scholar
  4. 4.
    Eger, P. (1994). Water Sci Technol, 29, 249–256.Google Scholar
  5. 5.
    Rubio, J., Souza, M. L., & Smith, R. W. (2002). Minerals Engineering, 15, 139–155.CrossRefGoogle Scholar
  6. 6.
    Valente, T. M., & Gomes, C. L. (2009). Sci Total Environ, 407, 1135–1152.CrossRefGoogle Scholar
  7. 7.
    Menezes, C. T. B., Isidoro, G., Rosa, J. J., Rubio, J., Leal-Filho, L. S., Galatto, S. L., & Santo, E. L. (2004). In: Treatment of acid mine drainage from Carbonífera Metropolitana. Proceedings of the 20th National Meeting on Minerals Treatment and Extractive Mettalurgy, Florianópolis. pp. 599–607 (in Portuguese).Google Scholar
  8. 8.
    Tessele, F., Rubio, J., & Misra, M. (1998). Minerals Engineering, 11, 535–543.CrossRefGoogle Scholar
  9. 9.
    Emamjomeh, M. M., & Sivakumar, M. (2009). Journal of Environmental Management, 90, 1204–1212.CrossRefGoogle Scholar
  10. 10.
    Peng, J.-F., Song, Y.-H., Yuan, P., Cui, X.-Y., & Qiu, G.-L. (2009). Journal of Hazardous Materials, 161, 633–640.CrossRefGoogle Scholar
  11. 11.
    Zouboulis, A. I., Matis, K. A., Lazaridis, N. K., & Golyshin, P. N. (2003). Minerals Engineering, 16, 1231–1236.CrossRefGoogle Scholar
  12. 12.
    Zouboulis, A. I., & Matis, K. A. (1995). Water Sci Technol, 31, 315–319.CrossRefGoogle Scholar
  13. 13.
    Urum, K., Pekdemir, T., Ross, D., & Grigson, S. (2005). Chemosphere, 60, 334–343.CrossRefGoogle Scholar
  14. 14.
    Beneventi, D., Allix, J., Zeno, E., Nortier, P., & Carré, B. (2009). Separation and Purification Technology, 64, 357–367.CrossRefGoogle Scholar
  15. 15.
    Féris, L. A., Gallina, S. C., Rodrigues, R. T., & Rubio, R. (2001). Journal of Water Science and Technology, 43, 145–152.Google Scholar
  16. 16.
    Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Current Science, 94, 736–747.Google Scholar
  17. 17.
    Cortis, A., & Ghezzehei, T. A. (2007). Journal of Colloid and Interface Science, 313, 1–4.CrossRefGoogle Scholar
  18. 18.
    Singh, A., Van-Hamme, J. D., & Ward, O. P. (2007). Biotechnology Advances, 25, 99–121.CrossRefGoogle Scholar
  19. 19.
    Wang, S., & Mulligan, C. N. (2004). Water, Air, and Soil Pollution, 157, 315–330.CrossRefGoogle Scholar
  20. 20.
    Mulligan, C. N. (2005). Environmental Pollution, 133, 183–198.CrossRefGoogle Scholar
  21. 21.
    Coimbra, C. D., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2009). Current Microbiology, 58, 245–249.CrossRefGoogle Scholar
  22. 22.
    Asçi, Y., Nurbas, M., & Açikel, Y. S. A. (2008). Journal of Hazardous Materials, 154, 663–673.CrossRefGoogle Scholar
  23. 23.
    Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Engineering Geology, 60, 371–380.CrossRefGoogle Scholar
  24. 24.
    Sen, R. (2008). Progress in Energy Combustion Science, 34, 714–724.CrossRefGoogle Scholar
  25. 25.
    Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Applied Microbiology and Biotechnology, 51, 553–563.CrossRefGoogle Scholar
  26. 26.
    Lu, J. R., Zhao, X. B., & Yaseen, M. (2007). Current Opinion in Colloid and Interface Science, 12, 60–67.CrossRefGoogle Scholar
  27. 27.
    Seydlová, G., & Svobodová, J. (2008). Central European Journal of Medicine, 2, 123–133.CrossRefGoogle Scholar
  28. 28.
    Sandrin, T. R., & Maier, R. M. (2003). Environ Health Perspect, 111, 1093–1101.CrossRefGoogle Scholar
  29. 29.
    Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., et al. (2008). Process Biochemistry, 43, 912–917.CrossRefGoogle Scholar
  30. 30.
    Rufino, R. D., Sarubbo, L. A., Benicio, B. N., & Campos-Takaki, G. M. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 907–914.CrossRefGoogle Scholar
  31. 31.
    Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2008) In: Proceedings of the 11th National Meeting on Environmental Microbiology, Stability of the biosurfactant from Candida sphaerica, Fortaleza. pp. 577–579 (in Portuguese).Google Scholar
  32. 32.
    APHA. (1992). Standard methods for the examination of water and wastewater - American Public Health Association, American Water Works Association & Water Environment Federation. Washington: Victor Graphics, Inc.Google Scholar
  33. 33.
    CONAMA (2005) Resolution No 357, Environment National Council, Brazil (in portuguese).Google Scholar
  34. 34.
    Matis, K. A. (1995). Flotation Science and Engineering. New York: Marcel Dekker.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlyle T. B. Menezes
    • 1
  • Erilson C. Barros
    • 1
  • Raquel D. Rufino
    • 2
  • Juliana M. Luna
    • 2
  • Leonie A. Sarubbo
    • 2
    • 3
    Email author
  1. 1.Institute of Environmental Technology ResearchUniversity of Southernmost CatarinenseCriciúmaBrazil
  2. 2.Nucleus of Research in Environmental Sciences (NPCIAMB)Catholic University of PernambucoBoa VistaBrazil
  3. 3.Center for Sciences and TechnologyCatholic University of PernambucoBoa VistaBrazil

Personalised recommendations