Skip to main content

Advertisement

Log in

Novel Activity of UDP-Galactose-4-Epimerase for Free Monosaccharide and Activity Improvement by Active Site-Saturation Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Uridine diphosphogalactose-4-epimerase (UDP-galactose-4-epimerase, GalE, EC 5.1.3.2) mediates the 4-epimerization of nucleic acid-activated galactose into UDP-glucose. To date, no enzyme is known to mediate 4-epimerization of free monosaccharide substrates. To determine the potential activity of GalE for free monosaccharide, Escherichia coli GalE was expressed and purified using Ni-affinity chromatography, and its ability to mediate 4-epimerization of a variety of free keto- and aldohexoses was assessed. Purified GalE was found to possess 4-epimerization activity for free galactose, glucose, fructose, tagatose, psicose, and sorbose at 0.47, 0.31, 2.82, 9.67, 15.44, and 2.08 nmol/mg protein per minute, respectively. No 4-epimerization activity was found for allose, gulose, altrose, idose, mannose, and talose. The kinetic parameters of 4-epimerization reactions were K m = 26.4 mM and k cat = 0.0155 min−1 for d-galactose and K m = 237 mM and k cat = 0.327 min−1 for d-tagatose. The 4-epimerization of tagatose, a reaction of commercial interest, was enhanced twofold (19.79 nmol/mg protein per minute) when asparagine was exchanged with serine at position 179. The novel activity of GalE for free monosaccharide may be beneficial for the production of rare sugars using cheap natural resources. Potential strategies for developing enhanced GalE with increased 4-epimerization activity are discussed in the context of the above findings and an analysis of a 3D structural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Microbiological Reviews, 60(2), 280–300.

    CAS  Google Scholar 

  2. Kim, P. (2004). Applied Microbiology and Biotechnology, 65(3), 243–249.

    CAS  Google Scholar 

  3. Matsuo, T., et al. (2001). Asia Pacific Journal of Clinical Nutrition, 10(3), 233–237.

    Article  CAS  Google Scholar 

  4. Matsuo, T., et al. (2002). Journal of Nutritional Science and Vitaminology (Tokyo), 48(1), 77–80.

    CAS  Google Scholar 

  5. Leloir, L. F. (1951). Archives of Biochemistry, 33(2), 186–190.

    Article  CAS  Google Scholar 

  6. Vanhooke, J. L., & Frey, P. A. (1994). Journal of Biological Chemistry, 269(50), 31496–31504.

    CAS  Google Scholar 

  7. Agarwal, S., et al. (2007). Biochimica et Biophysica Acta, 1774(7), 828–837.

    CAS  Google Scholar 

  8. Samanta, A. K., & Bhaduri, A. (1983). Journal of Biological Chemistry, 258(18), 11118–11122.

    CAS  Google Scholar 

  9. Grossiord, B. P., et al. (2003). Journal of Bacteriology, 185(3), 870–878.

    Article  CAS  Google Scholar 

  10. Geren, C. R., & Ebner, K. E. (1977). Journal of Biological Chemistry, 252(6), 2082–2088.

    CAS  Google Scholar 

  11. Daude, N., et al. (1995). Biochemical and Molecular Medicine, 56(1), 1–7.

    Article  CAS  Google Scholar 

  12. Kotake, T., et al. (2009). Biochemical Journal, 424(2), 169–177.

    Article  CAS  Google Scholar 

  13. Shneour, E. A., & Hansen, I. M. (1969). Brain Research, 16(2), 501–510.

    Article  CAS  Google Scholar 

  14. Granstrom, T. B., et al. (2004). Journal of Bioscience and Bioengineering, 97(2), 89–94.

    Google Scholar 

  15. Kim, H. J., et al. (2010). Journal of Microbiology and Biotechnology, 20(6), 1018–1021.

    Article  CAS  Google Scholar 

  16. Shen, X., & Perreault, H. (1998). Journal of Chromatography A, 811(1–2), 47–59.

    Article  CAS  Google Scholar 

  17. Honda, S., et al. (1989). Analytical Biochemistry, 180(2), 351–357.

    Article  CAS  Google Scholar 

  18. Suzuki, S., Kakehi, K., & Honda, S. (1996). Analytical Chemistry, 68(13), 2073–2083.

    Article  CAS  Google Scholar 

  19. Ray, M., & Bhaduri, A. (1975). Journal of Biological Chemistry, 250(10), 3595–3601.

    CAS  Google Scholar 

  20. Ameyama, M., et al. (1981). Journal of Bacteriology, 145(2), 814–823.

    CAS  Google Scholar 

  21. Thoden, J. B., Frey, P. A., & Holden, H. M. (1996). Biochemistry, 35(16), 5137–5144.

    Article  CAS  Google Scholar 

  22. Schneidman-Duhovny, D., et al. (2003). Proteins, 52(1), 107–112.

    Article  CAS  Google Scholar 

  23. Darrow, R. A., & Rodstrom, R. (1968). Biochemistry, 7(5), 1645–1654.

    Article  CAS  Google Scholar 

  24. Thoden, J. B., et al. (2001). Journal of Biological Chemistry, 276(18), 15131–15136.

    Article  CAS  Google Scholar 

  25. Thoden, J. B., Frey, P. A., & Holden, H. M. (1996). Biochemistry, 35(8), 2557–2566.

    Article  CAS  Google Scholar 

  26. Thoden, J. B., et al. (1997). Biochemistry, 36(21), 6294–6304.

    Article  CAS  Google Scholar 

  27. Liu, Y., et al. (1997). Biochemistry, 36(35), 10675–10684.

    Article  CAS  Google Scholar 

  28. Thoden, J. B., Frey, P. A., & Holden, H. M. (1996). Protein Science, 5(11), 2149–2161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Ministry of Education, Science, and Technology (R01-2009-0070677, R1-2007-000-202310). P. Kim was further supported by a 2009 Research Grant from the Catholic University of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Optimal conditions (pH, temperature, and [NAD+]) for 4-epimerization of glucose (PDF 23 kb)

Figure S2

SDS-PAGE of GalE wild-type and variant N179S (soluble fraction) (PDF 17 kb)

Figure S3

Chromatograms of GalE-mediated conversion of glucose into galactose (a), fructose into tagatose (b), and psicose into sorbose (c). Chromatograms obtained after 4 h were superimposed on chromatograms obtained before the reaction (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Kang, S.Y., Park, J.J. et al. Novel Activity of UDP-Galactose-4-Epimerase for Free Monosaccharide and Activity Improvement by Active Site-Saturation Mutagenesis. Appl Biochem Biotechnol 163, 444–451 (2011). https://doi.org/10.1007/s12010-010-9052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9052-7

Keywords