Abstract
In this study, decolorization of dyestuffs, such as Reactive Red 198, Rem Blue RR, Dylon Navy 17, Rem Red RR, and Rem Yellow RR was studied using laccase and laccase-mediated system. The laccases are known to have an important potential for remediation of pollutants. Among these dyestuffs, decolorization of Rem Blue RR and Dylon Navy 17 was performed with crude laccase under optimized conditions. Vanillin was selected as laccase mediator after screening six different compounds with Rem Yellow RR, Reactive Red 198, and Rem Red RR as substrates. However, Rem Yellow RR was not decolorized by either laccase or laccase-mediated system. It is observed that the culture supernatant contained high laccase activity after treatment with catalase that was responsible for the decolorization. Besides, culture supernatant with high laccase activity as enzyme source was treated with catalase; in this way, the hypothesis that laccase was the enzyme responsible for decolorization was supported. The Rem Blue RR was decolorized with 64.84% under the optimum conditions and Dylon Navy 17 with 75.43% with crude laccase. However, using the laccase and vanillin, the decolorization of Reactive Red 198 and Rem Red RR was found to be 62% and 68%, respectively. Our study demonstrated that the decolorization abilities of laccase and/or laccase mediator systems were based on the types of mediator, the dye structure, and the standard experimental conditions. Also, the electrochemical behaviors of some samples were studied. The redox potentials of these samples were determined using cyclic voltammetry on glassy carbon electrode in phosphate buffer (pH 6) solution.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Bioresource Technology, 58, 217–227.
Chung, K. T., Stevens, S. E., Jr., & Cerniglia, C. E. (1992). Critical Reviews in Microbiology, 18, 175–190.
Michaels, G. B., & Lewis, D. L. (1985). Environmental Toxicology and Chemistry, 4, 45–50.
Rodriguez Couto, S., & Sanroman, M. A. (2007). Dyes and Pigments, 74, 123–126.
Stolz, A. (2001). Applied Microbiology and Biotechnology, 56, 69–80.
Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.
Gianfreda, L., Xu, F., & Bollag, J. (1999). The Biochemical Journal, 3, 1–25.
Crestini, C., & Argyropoulos, D. S. (1998). Bioorganic & Medicinal Chemistry, 6, 2161–2169.
Pickard, M. A., Roman, A. R., Tinoco, R., & Vazquez-Duhalt, R. (1999). Applied and Environmental Microbiology, 65, 3805–3809.
Li, K., Xu, F., & Eriksson, K. E. (1999). Applied and Environmental Microbiology, 65, 2654–2660.
Tinoco, R., Verdin, J., & Vasquez-Duhalt, R. (2007). Journal of Molecular Catalysis. B, Enzymatic, 46, 1–7.
Tavares, A. P. M., Gamelas, J. A. F., Gaspar, A. R., Evtuguin, D. V., & Xavier, A. M. R. B. (2004). Catalysis Communications, 5, 485–489.
Gamelas, J. A. F., Tavares, A. P. M., Evtuguin, D. V., & Xavier, A. M. B. (2005). Journal of Molecular Catalysis. B, Enzymatic, 33, 57–64.
Barriere, F., Ferry, Y., Rochefort, D., & Leech, D. (2004). Electrochemistry Communications, 6, 237–241.
Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Applied and Environmental Microbiology, 71, 1775–1784.
Johannes, C., & Majcherczyk, A. (2000). Applied and Environmental Microbiology, 66, 524–528.
Kang, K. H., Dec, J., Park, H., & Bollag, J. M. (2002). Water Research, 36, 4907–4915.
Bourbonnais, R., & Paice, M. G. (1990). FEBS Letters, 267, 99–102.
Morozova, O. V., Shumakovich, G. P., Shleev, S. V., & Yaropolov, Y. I. (2007). Applied Biochemistry and Microbiology, 43, 523–535.
Hu, M. R., Chao, Y. P., Zhang, G. Q., Xue, Z. Q., & Qian, S. (2009). Journal of Industrial Microbiology & Biotechnology, 36, 45–51.
Sadhasivam, S., Savitha, S., & Swaminathan, K. (2009). World Journal of Microbiology and Biotechnology, 25, 1733–1741.
Murugesan, K., Kim, Y., Jeon, J., & Chang, Y. (2009). Journal of Hazardous Materials, 168, 523–529.
Tavares, A. P. M., Cristovao, R. O., & Gamales, J. A. F. (2009). Journal of Chemical Technology and Biotechnology, 84, 442–446.
Murugesan, K., Yang, I., Kim, Y., Jeon, J., & Chang, Y. (2009). Applied Microbiology and Biotechnology, 82, 341–350.
Tavares, A. P. M., Cristovao, R. O., Loureiro, J. M., Boaventura, R. A. R., & Macedo, E. A. (2008). Journal of Chemical Technology and Biotechnology, 83, 1609–1615.
Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2008). Applied Biochemistry and Biotechnology, 151, 587–598.
Cho, H., Cho, N., Jarosa-Wilkolazka, A., Rogalski, J., Leonowicz, A., Shin, Y., et al. (2007). Journal of the Faculty of Agriculture, 52, 275–280.
Gutierrez, A., Del Rio, J. C., Rencoret, J., Ibarra, D., & Martinez, A. T. (2006). Applied Microbiology and Biotechnology, 72, 845–851.
Gedikli, S. (2008). Msc Thesis, Eskişehir Osmangazi Üniversitesi.
Taspinar, A., & Kolankaya, N. (1998). Bulletin of Environmental Contamination and Toxicology, 61, 15–21.
Couto, S. R., Sanromán, M., & Gubitz, G. M. (2005). Chemosphere, 58, 417–422.
d’Acunzo, F., & Galli, C. (2003). European Journal of Biochemistry, 270, 3634–3640.
Li, K. C., Helm, R. F., & Eriksson, K. E. L. (1998). Biotechnology and Applied Biochemistry, 27, 239–243.
Fernández-Sánchez, C., Tzanov, T., Gübitz, G. M., & Cavaco-Paul, A. (2002). Bioelectrochemistry, 58, 149–156.
Borchert, M., & Libra, J. A. (2001). Biotechnology and Bioengineering, 75, 313–321.
Munari, F. M., Tamara, A. G., Calloni, R., & Dillon, A. J. P. (2008). World Journal of Microbiology and Biotechnology, 24, 1383–1392.
Wong, Y., & Yu, J. (1999). Water Research, 33, 3512–3520.
Kapdan, I. K., Kargı, F., McMullan, G., & Marchant, R. (2000). Bioprocess Engineering, 22, 347–351.
Jolivalt, C., Neuville, L., Boyer, F. D., Kerhoas, L., & Mougin, C. (2006). Journal of Agriculture and Food Chemistry, 54, 5046–5054.
Mechichi, T., Mhiri, N., & Sayadi, S. (2006). Chemosphere, 64, 998–1005.
Kariminiaae-Hamedaani, H. R., Sakurai, A., & Sakakibara, M. (2007). Dyes and Pigments, 72, 157–162.
Zhang, M., Wu, F., Wei, Z., Xiao, Y., & Gonga, W. (2006). Enzyme and Microbial Technology, 39, 92–97.
Revankar, M. S., & Lele, S. S. (2007). Bioresource Technology, 98, 775–780.
Ciullini, I., Tilli, S., Scozzafava, A., & Briganti, F. (2008). Bioresource Technology, 99, 7003–7010.
Pfaller, R., Aman, M., Freudenreich, J. (1998). Analysis of laccase mediator interactions in the LMS®, In: Proc. 7th Intl Conf Biotech Pulp Paper Industry, Vancouver, Canada, pp. A99-A102.
Moldes, D., & Sanroman, M. A. (2006). World Journal of Microbiology and Biotechnology, 22, 1197–1204.
Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. J. W., et al. (2000). Applied and Environmental Microbiology, 66, 2052–2056.
Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., & Borneman, S. (1997). Applied and Environmental Microbiology, 63, 4627–4632.
Acknowledgements
This study is based partly on the MSc thesis of S.Şaşmaz, who is one of the authors.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Şaşmaz, S., Gedikli, S., Aytar, P. et al. Decolorization Potential of Some Reactive Dyes with Crude Laccase and Laccase-Mediated System. Appl Biochem Biotechnol 163, 346–361 (2011). https://doi.org/10.1007/s12010-010-9043-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-010-9043-8