Skip to main content
Log in

Co-culture Based Blood-brain Barrier In Vitro Model, a Tissue Engineering Approach using Immortalized Cell Lines for Drug Transport Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the feasibility of using commercially available immortalized cell lines in building an in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Astrocytes-derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel biomimetic basement membrane for the endothelial cells to form tight junctions. Trans-Endothelial Electrical Resistance (TEER) and solute mass transport studies quantitatively evaluated the tight junction formation. Immuno-fluorescence microscopy and Western blot analysis qualitatively verified the expression of occludin, one of the tight junction proteins on the samples. Experimental data from a total of 13 experiments conclusively showed that the novel BBB in vitro co-culture model with aECM (CO + aECM) is promising in terms of establishing tight junction formation represented by TEER values, transport profiles, and tight junction protein expression when compared with traditional co-culture (CO) model setup or the endothelial cells cultured alone (EC). In vitro colorimetric sulforhodamine B (SRB) assay also revealed that the “CO + aECM” samples resulted in less cell loss on the basal sides of the insert membranes than traditional co-culture models. Our novel approach using immortalized cell lines with the addition of aECM was proven to be a feasible and repeatable alternative to the traditional BBB in vitro modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, Y., & Miller, D. W. (2005). Drug Delivery Principles and Applications. In B. Wang, T. Siahaan, & R. A. Soltero (Eds.), Hoboken. New Jersey: John Wiley & Sons, Inc.

    Google Scholar 

  2. Garcia-Garcia, E., Gil, S., Andrieux, K., Desmaele, D., Nicolas, V., Taran, F., et al. (2005). Cellular and Molecular Life Sciences, 62(12), 1400–1408.

    Article  CAS  Google Scholar 

  3. Engelhardt, B. (2003). Cell and Tissue Research, 314(1), 119–129.

    Article  CAS  Google Scholar 

  4. Hawkins, B. T., & Davis, T. P. (2005). Revelation, 57(2), 173–185.

    CAS  Google Scholar 

  5. Zlokovic, B. V. (2008). Neuron, 57(2), 178–201.

    Article  CAS  Google Scholar 

  6. Pardridge, W. M. (1999). Journal of Neurovirology, 5(6), 556–569.

    Article  CAS  Google Scholar 

  7. Rubin, L. L., & Staddon, J. M. (1999). Annual Review of Neuroscience, 22(1), 11–28.

    Article  CAS  Google Scholar 

  8. Haseloff, R. F., Blasig, I. E., Bauer, H. C., & Bauer, H. (2008). BBA-Biomembranes., 1778(3), 588–600.

    Article  Google Scholar 

  9. Kacem, K., Lacombe, P., Seylaz, J., & Bonvento, G. (1998). Glia, 23(1), 1–10.

    Article  CAS  Google Scholar 

  10. Barrios-Rodiles, Brown, M. K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., et al. (2005). Science, 307(5715), 1621–1625.

    Article  CAS  Google Scholar 

  11. Li, D., & Mrsny, R. J. (2000). The Journal of Cell Biology, 148(4), 791–800.

    Article  CAS  Google Scholar 

  12. Yu, A. S. L., McCarthy, K. M., Francis, S. A., McCormack, J. M., Lai, J., Rogers, R. A., et al. (2005). American Journal of Physiology. Cell Physiology, 288(6), 1231–1241.

    Article  Google Scholar 

  13. Murata, M., Kojima, T., Yamamoto, T., Go, M., Takano, K., Osanai, M., et al. (2005). Experimental Cell Research, 310(1), 140–151.

    Article  CAS  Google Scholar 

  14. Osanai, M., Murata, M., Nishikiori, N., Chiba, H., Kojima, T., & Sawada, N. (2006). Cancer Research, 66(18), 9125–9133.

    Article  CAS  Google Scholar 

  15. Wang, Z., Mandell, K. J., Parkos, C. A., Mrsny, R. J., & Nusrat, A. (2005). Oncogene, 24(27), 4412–4420.

    Article  CAS  Google Scholar 

  16. Mizuguchi, H., Utoguchi, N., & Mayumi, T. (1997). Brain Research Protocols, 1(4), 339–343.

    Article  CAS  Google Scholar 

  17. Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Nature Reviews. Neuroscience, 7(1), 41–53.

    Article  CAS  Google Scholar 

  18. Haring, H. P., Akamine, B. S., Habermann, R., Koziol, J. A., & Del Zoppo, G. J. (1996). Neuropath. Exp. Neur., 55(2), 236–245.

    Article  CAS  Google Scholar 

  19. Milner, R., & Campbell, I. L. (2002). Molecular and Cellular Neurosciences, 20(4), 616–626.

    Article  CAS  Google Scholar 

  20. Abbott, N. J. (2004). Drug. Discov. Today.: Technologies, 1(4), 407–416.

    Article  CAS  Google Scholar 

  21. Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R. D., et al. (2005). Toxicol In Vitro, 19(3), 299–334.

    Article  CAS  Google Scholar 

  22. Yoo, J. W., Kim, Y. S., Lee, S. H., Lee, M. K., Roh, H. J., Jhun, B. H., et al. (2003). Pharmaceutical Research, 20(10), 1690–1696.

    Article  CAS  Google Scholar 

  23. Li, C.-Z., Taniguchi, I., & Mulchandani, A. (2009). Bioelectrochemistry, 75, 182–188.

    Article  CAS  Google Scholar 

  24. Gray, T. E., Guzman, K., Davis, C. W., Abdullah, L. H., & Nettesheim, P. (1996). Am. J. Resp. Cell. Mol., 14(1), 104–112.

    CAS  Google Scholar 

  25. Levashova, Z. B., Plisov, S. Y., & Perantoni, A. O. (2003). Kidney International, 63(6), 2075–2087.

    Article  CAS  Google Scholar 

  26. Li, C.-Z., Nishiyama, K., Taniguchi, I. (2000). Electrochimica Acta, 45, 2883–2888.

    Google Scholar 

  27. Radany, E. H., Brenner, M., Besnard, F., Bigornia, V., Bishop, J. M., & Deschepper, C. F. (1992). P. Natl. Acad. Sci. USA, 89(14), 6467–6471.

    Article  CAS  Google Scholar 

  28. Hurst, R. D., & Fritz, I. B. (1996). Journal of Cellular Physiology, 167(1), 81–88.

    Article  CAS  Google Scholar 

  29. Vichai, V., & Kirtikara, K. (2006). Nature Protocols, 1(2), 1112–1116.

    Article  CAS  Google Scholar 

  30. Flaten, G. E., Dhanikula, A. B., Luthman, K., & Brandl, M. (2006). European Journal of Pharmaceutical Sciences, 27(1), 80–90.

    Article  CAS  Google Scholar 

  31. McCall, A. L., Millington, W. R., & Wurtman, R. J. (1982). Life Sciences, 31, 2709–2715.

    Article  CAS  Google Scholar 

  32. Nakazono, T., Murakami, T., Sakai, S., Higashi, Y., & Yata, N. (1992). Chemical & Pharmaceutical Bulletin, 40, 2510–2515.

    CAS  Google Scholar 

  33. Sadzuka, Y., Hatakeyama, H., Daimon, T., & Sonobe, T. (2008). International Journal of Pharmaceutics, 354(1–2), 63–69.

    Article  CAS  Google Scholar 

  34. Diglio, C. A., Grammas, P., Giacomelli, F., & Wiener, J. (1982). Laboratory Investigation, 46(6), 554–563.

    CAS  Google Scholar 

  35. Herrmann, J., Gressner, A. M., & Weiskirchen, R. (2007). Journal of Cellular and Molecular Medicine, 11(4), 704–722.

    Article  CAS  Google Scholar 

  36. Kuchler-Bopp, S., Delaunoy, J. P., Artault, J. C., Zaepfel, M., & Dietrich, J. B. (1999). NeuroReport, 10(6), 1347–1353.

    Article  CAS  Google Scholar 

  37. Hurst, R. D., Heales, S. J. R., Dobbie, M. S., Barker, J. E., & Clark, J. B. (1998). Brain Research, 802(1–2), 232–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This current work is partially supported by 2008 FIU Faculty Research Award to Dr. Chen-Zhong Li and the Dissertation Year Fellowship to Zhiqi Zhang granted by the Graduate School of Florida International University. Special thanks to Dr.Wang, Xiaotang’s Biochemistry Lab and his Ph.D. student Wang, Zheng and Hui Tian for their kind help on the Western blot assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., McGoron, A.J., Crumpler, E.T. et al. Co-culture Based Blood-brain Barrier In Vitro Model, a Tissue Engineering Approach using Immortalized Cell Lines for Drug Transport Study. Appl Biochem Biotechnol 163, 278–295 (2011). https://doi.org/10.1007/s12010-010-9037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9037-6

Keywords

Navigation