Skip to main content
Log in

Galanthamine and Related Alkaloids Production by Leucojum aestivum L. Shoot Culture using a Temporary Immersion Technology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The process of galanthamine and related alkaloids production by Leucojum aestivum shoot culture in a temporary immersion system was studied. It was established that temporary immersion approach is prospective for development of a biosynthetic process for obtaining valuable Amaryllidaceae alkaloids. Both immersion frequency and temperature had significant effect on biomass accumulation and the yields of galanthamine and related alkaloids. The maximal yield of galanthamine was achieved at the cultivation of L. aestivum shoot culture in temporary immersion RITA® system at immersion frequency 15 min flooding and 8 h stand-by periods, at 26 °C. Data on the relationships in the biological system “Nutrient medium–L. aestivum shoot culture–galanthamine” are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gabrielsen, B., Monath, T. P., Huggins, J. W., Pettit, G. R., Groszek, G., Hollingshead, M., et al. (1992). Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. Journal of Natural Products, 55, 1569–1581.

    Article  CAS  Google Scholar 

  2. Pettit, G. R., Pettit, G. R., III, Groszek, G., Backhaus, R. A., Doubek, D. L., Barr, J., et al. (1995). Antineoplastic agents, 301. An investigation of the Amaryllidaceae genus Hymenocallis. Journal of Natural Products, 58, 756–759.

    Article  CAS  Google Scholar 

  3. Luttmann, E., Linnemann, E., & Fels, G. (2002). Galanthamine as bis-functional ligand for the acetylcholinesterase. Journal of Molecular Modeling, 8, 208–216.

    Article  CAS  Google Scholar 

  4. Sweeney, J. E., Puttfarcken, P. S., & Coyle, J. T. (1989). Galanthamine, an acetylcholinesterase inhibitor: A time course of the effect on performance and neurochemical parameters in mice. Pharmacology Biochemistry and Behaviour, 34, 129–137.

    Article  CAS  Google Scholar 

  5. Thomsen, T., & Kewitz, H. (1990). Selective inhibition of human acetylholinesterase by galanthamine in vitro and in vivo. Life Sciences, 46, 1553–1558.

    Article  CAS  Google Scholar 

  6. Thomsen, T., Zendeh, H., Fischer, J. P., & Kewitz, H. (1991). In vitro effects of various cholinesterase inhibitors on acetyl and butyrylcholinesterase of healthy volunteers. Biochemical Pharmacology, 41, 139–141.

    Article  CAS  Google Scholar 

  7. Harvey, A. L. (1995). The pharmacology of galanthamine and its analogues. Pharmacy and Therapary, 68(1), 113–128.

    Article  CAS  Google Scholar 

  8. Radicheva, N., Vydevska, M., & Mileva, K. (1996). Nivalin P-induced changes in muscule fiber membrane processes. Methods and Finding in Experimental and Clinical Pharmacolody, 18, 301–308.

    CAS  Google Scholar 

  9. Novikova, Y. U., & Tulaganov, A. A. (2002). Identification and evaluation of purity of the parent substance and medicinal form of galanthamine hydrobromide. Pharmaceutical Chemistry Journal, 36(7), 396–397.

    Article  CAS  Google Scholar 

  10. Heinrich, M., & Teoh, H. L. (2004). Galanthamine from Snowdrop—The development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. Journal of Ethnopharmacology, 92, 147–162.

    Article  CAS  Google Scholar 

  11. Ptak, A., Tahchy, A. E., Dupire, F., Boisbrun, M., Henry, M., Chapleur, Y., et al. (2009). LCMS and GCMS for the Screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. Journal of Natural Products, 72, 142–147.

    Article  CAS  Google Scholar 

  12. Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., et al. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1), 18–23.

    Article  CAS  Google Scholar 

  13. Szlávik, L., Gyuris, A., Minarovits, J., Forgo, P., Molnar, J., & Hohmann, J. (2004). Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Medica, 70(9), 871–873.

    Article  Google Scholar 

  14. Liu, J., Hu, W. X., He, L. F., Ye, M., & Li, Y. (2004). Effacts of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Letters, 578(3), 245–250.

    Article  CAS  Google Scholar 

  15. Weniger, B., Italiano, L., Beck, J., Bastida, J., Bergόnon, S., Codina, C., et al. (1995). Cytotoxic activity of Amaryllidaceae alkaloids. Planta Medica, 61, 77–79.

    Article  CAS  Google Scholar 

  16. Berkov, S., Georgieva, L., Kondakova, V., Atanasov, A., Viladomat, F., Bastida, J., et al. (2009). Plant sources of galanthamine: Phytochemical and biotechnological aspects. Biotechnology and Biotechnological Equipment, 23(2), 1170–1176.

    CAS  Google Scholar 

  17. Pavlov, A., Berkov, S., Courot, E., Gocheva, T., Tuneva, D., Pandova, B., et al. (2007). Galanthamine production by Leucojum aestivum in vitro systems. Process Biochemistry, 42, 734–739.

    Article  CAS  Google Scholar 

  18. Selles, M., Bergonon, S., Viladomat, F., Bastida, J., & Codina, C. (1997). Effect of sucrose on growth and galanthamine production in shoot-clumps cultures of Narcissus confusus in liquid shake medium. Plant Cells, Tissue and Organ Cultures, 49, 129–138.

    Article  CAS  Google Scholar 

  19. Diop, M., Ptak, A., Chrétien, F., Henry, M., Chapleur, Y., & Laurain-Mattar, D. (2006). Galanthamine content of bulbs and in vitro cultures of Leucojum aestivum L. Natural Product Communications, 1(6), 475–479.

    CAS  Google Scholar 

  20. Georgiev, V., Berkov, S., Georgiev, M., Burrus, M., Codina, C., Bastida, J., et al. (2009). Optimized nutrient medium for galanthamine production in Leucojum aestivum L. in vitro shoot system. Zeitschrift für Naturforschung, 64C, 219–224.

    Google Scholar 

  21. Debnath, S. (2009). Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Engineering in Life Sciences, 9(3), 239–246.

    Article  CAS  Google Scholar 

  22. Pavlov, A., & Bley, Th. (2006). Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848–852.

    Article  CAS  Google Scholar 

  23. Berkov, S., Pavlov, A., Ilieva, M., Burrus, M., Popov, S., & Stanilova, M. (2005). CGC-MS of alkaloids in Leucojum aestivum plants and their in vitro cultures. Phytochemical Analyses, 16, 98–103.

    Article  CAS  Google Scholar 

  24. Berkov, S., Pavlov, A., Georgiev, V., Bastida, J., Burrus, M., Ilieva, M., et al. (2009). Alkaloid accumulation in Leucojum aestivum in vitro cultures. Natural Product Communication, 4(3), 359–364.

    CAS  Google Scholar 

  25. Pavlov, A., & Bley, Th. (2005). Betalams biosynthests by Beta vulqans L hairy root culture in different bioreactor systems. Scientific works of University of Food Technologies, Plovdiv, Bulgaria, 52(2), 299–304.

    Google Scholar 

  26. Perez-Alonso, N., Wilken, D., Gerth, A., Jaehn, A., Nitzsche, H.-M., Kerns, G., et al. (2009). Cardiotonic glycosides from biomass of Digitalis purpurea L cultured in temporary immersion systems. Plant Cell, Tissue and Organ Cultures, 99, 151–156.

    Article  CAS  Google Scholar 

  27. Teisson, C., Alvard, D., Berthouly, M., Cote, F., Escalant, J., Etienne, H., et al. (1996). Simple apparatus perform plant tissue culture by temporary immersion. Acta Horticulture, 440, 521–525.

    Google Scholar 

  28. Perez, A., Napoles, L., Carvajal, C., Hernandez, M., & Lorenzo, J. C. (2004). Effect of sucrose, inorganic salt, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cellular and Development Biology Plant, 40, 311–316.

    Article  CAS  Google Scholar 

  29. Javed, F., & Ikram, S. (2008). Effect of sucrose induced osmotic stress on callus growth and biochemical aspects of two wheat genotypes. Pakistan Journal of Botany, 40(4), 1487–1495.

    CAS  Google Scholar 

  30. Eichhorn, J., Takada, T., Kita, Y., & Zenk, M. (1998). Biosynthais of the Amaryllidaceae alkaloid galanthamine. Phytochemistry, 49(4), 1037–1047.

    Article  CAS  Google Scholar 

  31. Kim, S.-C., Kang, J.-I., Kim, M.-K., Hyun, J.-H., Boo, H.-J., Park, D.-B., et al. (2010). Promotion effect of norgalanthamine, a component of Crinum asiaticum, on hair growth. European Journal of Dermatology, 20(1), 42–48.

    CAS  Google Scholar 

  32. Pavlov, A., Georgiev, V., Marchev, A., & Berkov, S. (2009). Nutrient medium optimization for hyoscyamine production in diploid and tetraploid Datura stramonium L. hairy root cultures. World Journal of Microbiology & Biotechnology, 25, 2239–2245.

    Article  CAS  Google Scholar 

  33. Pavlov, A., Georgiev, M., Panchev, I., & Ilieva, M. (2005). Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnology Progress, 21, 394–396.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research has been supported by National Science Fund of Bulgaria under contract number DO-02/105-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Pavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, I., Georgiev, V., Georgiev, M. et al. Galanthamine and Related Alkaloids Production by Leucojum aestivum L. Shoot Culture using a Temporary Immersion Technology. Appl Biochem Biotechnol 163, 268–277 (2011). https://doi.org/10.1007/s12010-010-9036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9036-7

Keywords

Navigation