Skip to main content

Advertisement

Log in

ASBR Applied to the Treatment of Biodiesel Production Effluent: Effect of Organic Load and Fill Time on Performance and Methane Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of organic matter and fill time on anaerobic sequencing batch reactor (5 L, 30°C, 8-h cycles, 50 rpm) efficiency has been analyzed. Organic matter was increased by the influent concentration. Fill times investigated were in the batch mode and fed-batch followed by batch. In the batch mode organic matter removal were 93%, 81%, and 66% for influent concentration of 500, 1,000, and 2,000 mgCOD/L (0.6, 1.29, and 2.44 gCOD/L.d), respectively. At 3,000 mgCOD/L (3.82 gCOD/L.d) operational stability could not be achieved. Removal efficiency was improved by increasing the fill time, and was 85% for the 1,000 mgCOD/L condition and fill times of 2 and 4 h, and 80 and 77% for the 2,000 mgCOD/L condition and fill times of 2 and 4 h, respectively. Hence, gradual feeding seemed to improve and to smooth the profiles of organic matter and volatile acids along the cycle with 78 to 96 NmLCH4/gCOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2006). New configurations and operation strategies of anaerobic biofilm bioreactors applied to wastewater treatment. (Chapter 1). In E. C. Hearns (Ed.), Focus on Biotechnology Research. New York: Nova Science Publishers. 233 p.

    Google Scholar 

  2. Friedl, G. F., Mockaitis, G., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio. Applied Biochemistry and Biotechnology, 159, 95–109.

    Article  CAS  Google Scholar 

  3. Novaes, L. F., Borges, L. O., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Effect of fill time on the performance of pilot-scale ASBR and AnSBBR applied to sanitary wastewater treatment. Applied Biochemistry and Biotechnology, 162, 885–899.

    Article  Google Scholar 

  4. Canto, C. S. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Anaerobic sequencing batch biofilm reactor (AnSBBR): some applications to sanitary and industrial wastewaters. (Chapter 2). In R. H. Theobald (Ed.), Environmental Management. New York: Nova Science Publishers. 429 p.

    Google Scholar 

  5. Canto, C. S. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Feasibility of nitrification/denitrification in a sequential batch biofilm reactor with liquid circulation applied to post-treatment. Bioresource Technology, 99, 644–654.

    Article  Google Scholar 

  6. Shizas, I., & Bagley, D. M. (2002). Improving anaerobic sequencing batch reactor performance by modifying operational parameters. Water Research, 36, 363–367.

    Article  CAS  Google Scholar 

  7. Bergamo, C. M., Monaco, R., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Effects of temperature at different organic loading levels on the performance of a fluidized-bed anaerobic sequencing batch bioreactor. Chemical Engineering and Processing, 48, 789–796.

    CAS  Google Scholar 

  8. Angenent, L. T., Sung, S., & Raskin, L. (2002). Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research, 36, 4648–4654.

    Article  CAS  Google Scholar 

  9. Michelan, R., Zimmer, T. R., Rodrigues, J. A. D., Ratusznei, S. M., Moraes, D., Zaiat, M., et al. (2009). Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater. Journal of Environmental Management, 90, 1357–1364.

    Article  CAS  Google Scholar 

  10. Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21, 423–434.

    Article  CAS  Google Scholar 

  11. Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Zaiat, M. (2003). Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. Advances in Environmental Research, 7, 405–410.

    Article  CAS  Google Scholar 

  12. Damasceno, L.H.S., Rodrigues, J.A.D., Ratusznei, S.M., Zaiat, M., Foresti, E. (2008). Effect of mixing mode on the behavior of an ASBBR with immobilized biomass in the treatment of cheese whey. Brazilian Journal of Chemical Engineering, 25(02), 291–298.

    Google Scholar 

  13. Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor—model development and experimental validation. Water Environment Research, 71, 1320–1332.

    Article  CAS  Google Scholar 

  14. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Effects of feed time, organic loading and shock loads in the anaerobic whey treatment by an AnSBBR with circulation. Applied Biochemistry and Biotechnology, 157, 140–158.

    Article  CAS  Google Scholar 

  15. Cheong, D. Y., & Hansen, C. L. (2008). Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions. Bioresource Technology, 99, 5058–5068.

    Article  CAS  Google Scholar 

  16. Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology, 55, 29–35.

    Article  CAS  Google Scholar 

  17. Moreira, M. B., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2008). Influence of organic shock loads in an ASBBR treating synthetic wastewater with different concentration levels. Bioresource Technology, 99, 3256–3266.

    Article  CAS  Google Scholar 

  18. Ndegwa, P. M., Hanilton, D. W., Lalman, J. A., & Cumba, H. J. (2005). Optimization of anaerobic sequencing batch reactors treating dilute swine slurries. Transactions of the ASAE, 48, 1575–1583.

    CAS  Google Scholar 

  19. Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85, 927–935.

    Article  CAS  Google Scholar 

  20. Massé, D. I., & Masse, L. (2000). Treatment of slaghterhouse wastewater in anaerobic sequencing batch reactors. Canadian Agricultural Engineering, 42, 131–137.

    Google Scholar 

  21. Oliveira, R. P., Ghilardi, J. A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2008). Anaerobic sequencing batch biofilm reactor applied to automobile industry wastewater treatment: volumetric loading rate and feed strategy effects. Chemical Engineering and Processing, 47, 1380–1389.

    CAS  Google Scholar 

  22. Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.

    Article  CAS  Google Scholar 

  23. Xiangwen, S., Dangcong, P., Zhaohua, T., & Xinghua, J. (2008). Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 99, 3182–3186.

    Article  Google Scholar 

  24. Oliveira, D. S., Prinholato, A. C., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, 90, 3070–3081.

    Article  Google Scholar 

  25. Sahinkaya, E., & Dilek, F. B. (2007). Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2, 4-DCP. Journal of Environmental Management, 83, 427–436.

    Article  CAS  Google Scholar 

  26. Sirianuntapiboon, S., Chairattanawan, K., & Surasinanant, P. (2007). Some properties of a sequencing batch reactor for treatment of wastewater containing thiocyanate compounds. Journal of Environmental Management, 85, 330–337.

    Article  CAS  Google Scholar 

  27. Sirianuntapiboon, S., Sadahiro, O., & Salee, P. (2007). Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes. Journal of Environmental Management, 85, 162–170.

    Article  CAS  Google Scholar 

  28. Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Biotechnology, 18, 213–219.

    CAS  Google Scholar 

  29. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol containing wastes discharges after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100, 260–265.

    Article  CAS  Google Scholar 

  30. Suehara, K., Kawamoto, Y., Fujii, E., Kohda, J., Nakano, Y., & Yano, T. (2005). Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. Journal of Bioscience and Bioengineering, 100, 437–442.

    Article  CAS  Google Scholar 

  31. Nishio, N., & Nakashimada, Y. (2007). Recent development of digestion process for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103, 105–112.

    Article  CAS  Google Scholar 

  32. Yang, Y., Tsukahara, K., & Sawayama, S. (2008). Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochemistry, 43, 362–367.

    Article  CAS  Google Scholar 

  33. Sabourin-Provost, G., & Hallenbeck, P. C. (2009). High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technology, 100, 3513–3517.

    Article  CAS  Google Scholar 

  34. Standard Methods for the Examination of Water and Wastewater. (1995). APHA, AWWA, WPCF (19th ed.). Washington: American Public Health Association.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (São Paulo, Brazil), process numbers 01/05.489-0 and 08/55.527-5 (V.C. Selma). The authors gratefully acknowledge Dr. Baltus C. Bonse for the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. D. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selma, V.C., Cotrim, L.H.B., Rodrigues, J.A.D. et al. ASBR Applied to the Treatment of Biodiesel Production Effluent: Effect of Organic Load and Fill Time on Performance and Methane Production. Appl Biochem Biotechnol 162, 2365–2380 (2010). https://doi.org/10.1007/s12010-010-9009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9009-x

Keywords

Navigation