Skip to main content
Log in

Catalytic Properties of Two Rhizopus oryzae 99-880 Glucoamylase Enzymes Without Starch Binding Domains Expressed in Pichia pastoris

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 13 July 2010

An Erratum to this article was published on 13 July 2010

Abstract

Catalytic properties of two glucoamylases, AmyC and AmyD, without starch binding domains from Rhizopus oryzae strain 99-880 are determined using heterologously expressed enzyme purified to homogeneity. AmyC and AmyD demonstrate pH optima of 5.5 and 6.0, respectively, nearly one unit higher than the Rhizopus AmyA glucoamylase enzyme. Optimal initial activities are at 60 and 50 °C for AmyC and AmyD, respectively. Inactivation of both enzymes occurs at 50 °C following 30 min pre-incubation. The two enzymes demonstrate substantially slower catalytic rates toward soluble starch relative to AmyA. AmyC has similar k cat and K m for oligosaccharides to other Rhizopus and Aspergillus glucoamylases; however, the enzyme has a 2-fold lower K maltosem . AmyD has a 3-fold higher K m and lower k cat for maltooligosaccharides than AmyC and other glucoamylases. AmyC (but not AmyD) exhibits substrate inhibition. K i for substrate inhibition decreases with increasing length of the oligosaccharides. Data from pre-steady-state binding of AmyC to maltose and maltotriose and pre-steady-state to steady-state catalytic turnover experiments of AmyC acting on maltotriose were used to interrogate models of substrate inhibition. In the preferred model, AmyC accumulates an enzyme-maltose-maltotriose dead-end complex in the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hiromi, K., Ohnishi, M., & Tanaka, A. (1983). Molecular and Cellular Biochemistry, 51, 79–95.

    Article  CAS  Google Scholar 

  2. Olsen, K., Christensen, U., Sierks, M. R., & Svensson, B. (1993). Biochemistry, 32, 9686–9693.

    Article  CAS  Google Scholar 

  3. Aleshin, A. E., Firsov, L. M., & Honzatko, R. B. (1994). Journal of Biological Chemistry, 269, 15631–15639.

    CAS  Google Scholar 

  4. Christensen, U., Olsen, K., Stoffer, B. B., & Svensson, B. (1996). Biochemistry, 35, 15009–15018.

    Article  CAS  Google Scholar 

  5. Sierks, M. R., & Svensson, B. (1996). Biochemistry, 35, 1865–1871.

    Article  CAS  Google Scholar 

  6. Christensen, U. (2000). Biochemical Journal, 349, 623–628.

    Article  CAS  Google Scholar 

  7. Coutino, P. M., & Reilly, P. J. (1997). Proteins, 29, 334–347.

    Article  Google Scholar 

  8. Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodshaya, E., Harrison, M., et al. (2000). Biochimica et Biophysica Acta, 1543, 275–293.

    CAS  Google Scholar 

  9. Ševčík, J., Solovicová, A., Hostinová, E., Gašperik, J., Wilson, K. S., & Dauter, Z. (1998). Acta Crystallographica Section D Biological Crystallography, 54, 854–866.

    Article  Google Scholar 

  10. Solovicová, A., Christensen, T., Hostinová, E., Gašperik, J., Ševčík, J., & Svensson, B. (1999). European Journal of Biochemistry, 264, 756–764.

    Article  Google Scholar 

  11. Ishida, H., Hata, Y., Ichikawa, E., Kawato, A., Suginami, K., & Imayasu, S. (1998). Journal of Fermentation and Bioengineering, 86, 301–307.

    Article  CAS  Google Scholar 

  12. Mertens, J. A., & Skory, C. D. (2006). Current Microbiology, 54, 462–466.

    Article  Google Scholar 

  13. Mertens, J. A., & Skory, C. D. (2007). Enzyme and Microbial Technology, 40, 874–880.

    Article  CAS  Google Scholar 

  14. Takahashi, T., Tsuchida, Y., & Irie, M. (1978). Journal of Biochemistry, 84, 1183–1194.

    CAS  Google Scholar 

  15. Ma, L., Ibrahim, A. S., Skory, C., Grabherr, M. G., Burger, G., Butler, M., et al. (2009). PLoS Genetics, 5(7), e1000549. doi:10.371/journal.pgen.1000549.

    Article  Google Scholar 

  16. Zhang, W., Liu, C., Inan, M., & Meagher, M. M. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 330–334.

    CAS  Google Scholar 

  17. Gill, S. C., & von Hippel, P. H. (1989). Analytical Biochemistry, 182, 319–26.

    Article  CAS  Google Scholar 

  18. Leatherbarrow, R. J. (2001). Grafit Version 5. Horley: Erithacus Software Ltd.

    Google Scholar 

  19. Jordan, D. B. (2008). Applied Biochemistry and Biotechnology, 146, 137–149.

    Article  CAS  Google Scholar 

  20. Johnson, K. A., Simpson, Z. B., & Blom, T. (2009). Analytical Biochemistry, 387, 20–29.

    Article  CAS  Google Scholar 

  21. Fierobe, H. P., Mirgorodskaya, E., Frandsen, T. P., Roepstorff, P., & Svensson, B. (1997). Protein Expression and Purification, 9, 159–170.

    Article  CAS  Google Scholar 

  22. Wang, H. L. (1988). Biotechnology and Applied Biochemistry, 10, 191–200.

    CAS  Google Scholar 

  23. Yu, Y., & Hang, Y. D. (1991). Food Chemistry, 40, 301–308.

    Article  CAS  Google Scholar 

  24. Norouzian, D., Akbarzadeh, A., Scharer, J. M., & Young, M. M. (2006). Biotechnology Advances, 24, 80–85.

    Article  CAS  Google Scholar 

  25. Hiromi, K., Nitta, Y., Numata, C., & Ono, S. (1973). Biochimica et Biophysica Acta, 302, 362–375.

    CAS  Google Scholar 

  26. Natarajan, S., & Sierks, M. R. (1996). Biochemistry, 35, 15269–15279.

    Article  CAS  Google Scholar 

  27. Pazur, J. H., Cepure, A., Okada, S., & Forsberg, L. S. (1977). Carbohydrate Research, 58, 193–202.

    Article  CAS  Google Scholar 

  28. Natarajan, S., & Sierks, M. R. (1996). Biochemistry, 35, 3050–3058.

    Article  CAS  Google Scholar 

  29. Olsen, K., Svensson, B., & Christensen, U. (1992). European Journal of Biochemistry, 209, 777–784.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Bowman for MALDI-TOF analysis of the expressed AmyC and AmyD proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Mertens.

Additional information

The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-010-9030-0

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, J.A., Braker, J.D. & Jordan, D.B. Catalytic Properties of Two Rhizopus oryzae 99-880 Glucoamylase Enzymes Without Starch Binding Domains Expressed in Pichia pastoris . Appl Biochem Biotechnol 162, 2197–2213 (2010). https://doi.org/10.1007/s12010-010-8994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8994-0

Keywords

Navigation