Fucoidan-Degrading Fungal Strains: Screening, Morphometric Evaluation, and Influence of Medium Composition

Abstract

Ten different fungal strains from the genus Aspergillus, Penicillium, and Mucor were screened for fucoidan hydrolyzing ability aiming to find microorganisms able to produce sulfated fucan-degrading enzymes. Screening was carried out by measuring the strains kinetic and morphometric behavior over plate assays using Laminaria japonica fucoidan as only carbon source, testing three nitrogen sources (urea, peptone, and sodium nitrate). The selected fungal strains were subsequently used in submerged fermentations, which were performed for (1) selection of the strains able to growth over fucoidan medium and (2) media selection, testing the synergy of fucoidan with other sugars for inducing high enzyme titles. Radial expansion and hyphae parameters were observed for Aspergillus niger PSH, Mucor sp. 3P, and Penicillium purpurogenum GH2 grown only over fucoidan-urea medium. A. niger PSH showed the maximum enzymatic activity values, which were significantly different (p < 0.05) from those achieved by the other selected fungi. Sucrose addition to fucoidan media proportioned the highest fucoidanase activity values for this fungal strain. This research allowed establishing optimal conditions for metabolites synthesis by fungal stains able to act toward fucoidan ramified matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Alexeeva, Y. V., Ivanova, E. P., Bakunina, I. Y., Zvaygintseva, T. N., & Mikhailov, V. V. (2002). Letters in Applied Microbiology, 35, 343–346. doi:10.1046/j.1472-765X.2002.01189.x.

    CAS  Article  Google Scholar 

  2. 2.

    Ellouali, M., Boisson-Vidal, C., Durand, P., & Jozefonvicz, J. (1993). Anticancer Research, 13, 2011–2019.

    CAS  Google Scholar 

  3. 3.

    McClure, M. O., Moore, J. P., Blanc, D. F., Scotting, P., Cook, G. M., Keynes, R. J., et al. (1992). AIDS Research and Human Retroviruses, 8, 19–26.

    CAS  Article  Google Scholar 

  4. 4.

    Sakai, T., Kawai, T., & Kato, I. (2004). Marine Biotechnology, 6, 335–346. doi:10.1007/s10126-003-0033-5.

    CAS  Article  Google Scholar 

  5. 5.

    Urvantseva, A. M., Bakunina, I. Y., Nedashkovskaya, O. I., Kim, S. B., & Zvyagintseva, T. N. (2006). Applied Biochemistry and Microbiology, 42, 484–491. doi:10.1134/S0003683806050073.

    CAS  Article  Google Scholar 

  6. 6.

    Bakunina, I. Y., Nedashkovskaya, O. I., Alekseeva, S. A., Ivanova, E. P., Romanenko, L. A., Gorshkova, N. M., et al. (2002). Microbiology, 71, 41–47. doi:10.1023/A:1017994131769.

    CAS  Article  Google Scholar 

  7. 7.

    Furukawa, S., Fijikawa, T., Koga, D., & Ide, A. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 1829–1834.

    CAS  Article  Google Scholar 

  8. 8.

    Giordano, A., Andreotti, G., Tramice, A., & Trincone, A. (2006). Biotechnology Journal, 1, 511–530. doi:10.1002/biot.200500036.

    CAS  Article  Google Scholar 

  9. 9.

    Carlsen, M., Spohr, A., Nielsen, J., Villadsen, J. (1996). Biotechnology and Bioengineering, 49, 266–276. doi:10.1002/(SICI)1097-0290(19960205)49:3<266::AID-BIT4>3.0.CO;2-I

  10. 10.

    Minjares-Carranco, A., Viniegra-Gonzalez, G., Trejo-Aguilar, B. A., & Aguilar, G. (1997). Enzyme and Microbial Technology, 21, 25–31. doi:10.1016/S0141-0229(96)00212-8.

    CAS  Article  Google Scholar 

  11. 11.

    Rodríguez-Gómez, D., Loera, O., Saucedo-Castañeda, G., & Viniegra-González, G. (2009). World Journal of Microbiology & Biotechnology, 25, 513–518. doi:10.1007/s11274-008-9917-x.

    Article  Google Scholar 

  12. 12.

    Larralde-Corona, C.P., Lopez-Isunza, F., & Viniegra-González, G. (1997) Biotechnology and Bioengineering, 56, 287–294. doi:10.1002/(SICI)1097-0290(19971105)56:3<287

  13. 13.

    Loera, O., & Viniegra, G. (1998). Biotechnology Techniques, 12, 801–804. doi:10.1023/A:1008824903979.

    CAS  Article  Google Scholar 

  14. 14.

    Cruz-Hernandez, M., Contreras-Esquivel, J. C., Lara, F., Rodriguez, R., & Aguilar, C. N. (2005). Zeitschrift fur Naturforschung, 60c, 844–848.

    Google Scholar 

  15. 15.

    Dreywood, R. (1946). Industrial and Engineering Chemistry, Analytical Edition, 18, 499. doi:10.1021/i560156a015.

    CAS  Article  Google Scholar 

  16. 16.

    Kavanagh, K. (2005). Fungi: Biology and applications. New York: Wiley.

    Book  Google Scholar 

  17. 17.

    Moure, D. (1998). Fungal morphogenesis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. 18.

    Antia, N. J., Harrison, P. J., & Oliveira, L. (1991). Phycologia, 30, 1–89.

    Google Scholar 

  19. 19.

    Collier, J. L., Brahamsha, B., & Palenik, B. (1999). Microbiology, 145, 447–459. doi:10.1099/13500872-145-2-447.

    CAS  Article  Google Scholar 

  20. 20.

    Juniper, S., & Abbott, L. K. (2006). Mycorrhiza, 16, 371–379. doi:10.1007/s00572-006-0046-9.

    CAS  Article  Google Scholar 

  21. 21.

    Papagianni, M. (2004). Biotechnology Advances, 22, 189–259. doi:10.1016/j.biotechadv.2003.09.005.

    CAS  Article  Google Scholar 

  22. 22.

    Burtseva, Y. V., Kusikin, M. I., Sova, V. V., Shevchenko, N. M., Skobun, A. S., & Zvyagintseva, T. N. (2000). Russian Journal of Marine Biology, 26, 453–456. doi:10.1023/A:1009459107956.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Nelson Lima and Dr. Zofia Kozakiewicz for fungal identification carried out in MUM laboratory, Cristiana de Castro for image analysis techniques, and Mexican Science and Technology Council (CONACYT) for Ph.D. fellowship support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Solange Inês Mussatto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez-Jasso, R.M., Mussatto, S.I., Pastrana, L. et al. Fucoidan-Degrading Fungal Strains: Screening, Morphometric Evaluation, and Influence of Medium Composition. Appl Biochem Biotechnol 162, 2177–2188 (2010). https://doi.org/10.1007/s12010-010-8992-2

Download citation

Keywords

  • Fucoidan
  • Fucoidanases
  • Fungal strains
  • Screening
  • Fermentation