Applied Biochemistry and Biotechnology

, Volume 162, Issue 7, pp 1938–1951 | Cite as

A Novel α-Glucosidase Inhibitor Protein from the Rhizomes of Zingiber ottensii Valeton

  • Nathachai Tiengburanatam
  • Apaporn Boonmee
  • Polkit Sangvanich
  • Aphichart KarnchanatatEmail author


The objective of this study was to investigate a new protein with α-glucosidase inhibitory activity from the rhizomes of Zingiber ottensii. With a simple salting-out technique followed by single-step anion-exchange purification, the protein was successfully purified from the rhizomes. This protein was found to have three likely sub-unit types, 32.5, 15.2, and 13.8 kDa, as revealed by native and reducing SDS-PAGE analysis. Determination of the kinetics of the inhibition of α-glucosidase from Saccharomyces cerevisiae by standard enzymatic methods indicated the maximum percent inhibition; IC50 and K i of this protein were 77.5%, 30.15 μg/ml, and 140 μmol, while the K m and V max were 2.35 μmol and 0.11 mM/min, respectively. The inhibitory action was pH-independent within the pH range 2–10, but was potentially affected by buffer salts, and was relatively temperature-stable between 4–35 °C, with a maximum activity at 65 °C. The amino acid sequence of an internal fragment of this purified Z. ottensii rhizomal protein had a similarity to the sequence from the plant cysteine proteinase family. Although this α-glucosidase inhibitory protein was purified from Z. ottensii rhizomes and preliminarily characterized, further studies are needed prior to firm applications being envisaged.


α-Glucosidase inhibitor Zingiber ottensii 



The authors thank the 90th Anniversary of Chulalongkorn University fund for financial support of this research. The Institute of Biotechnology and Genetic Engineering and Biotechnology program, the Faculty of Science, Chulalongkorn University, are both acknowledged for support and facilities. We also thank Dr. Robert Butcher (Publication Counselling Unit, Chulalongkorn University) for his constructive comments in preparing this manuscript.


  1. 1.
    Park, H., Hwang, K. Y., Kim, Y. H., Oh, K. H., Lee, J. Y., & Kim, K. (2008). Bioorganic & Medicinal Chemistry Letters, 18, 3711–3715.CrossRefGoogle Scholar
  2. 2.
    Gao, H., & Kawabata, J. (2005). Bioorganic & Medicinal Chemistry, 13, 1661–1671.CrossRefGoogle Scholar
  3. 3.
    Zhu, Y. P., Yin, L. J., Cheng, Y. Q., Yamaki, K., Mori, Y., Su, Y. C., et al. (2008). Food Chemistry, 109, 737–742.CrossRefGoogle Scholar
  4. 4.
    Taylor, J. R. N. (1994). Journal of the Institute of Brewing, 100, 417–419.Google Scholar
  5. 5.
    De Melo, E. B., Gomes, A. D., & Carvalho, I. (2006). Tetrahedron, 62, 10277–10302.CrossRefGoogle Scholar
  6. 6.
    Whitby, K., Pierson, T., Geiss, B., Lane, K., Engle, M., Zhou, Y., et al. (2005). Journal of Virology, 79, 8698–8706.CrossRefGoogle Scholar
  7. 7.
    Iwata, H., Suzuki, T., Takahashi, K., & Aramaki, I. (2002). Journal of Bioscience and Bioengineering, 93, 296–302.CrossRefGoogle Scholar
  8. 8.
    Malá, Š., Karasová, P., Marková, M., & Králová, B. (2001). Czech Journal of Food Sciences, 19, 57–61.Google Scholar
  9. 9.
    Ladas, S., Frydas, A., Papadopoulos, A., & Raptis, S. (1992). Gut, 33, 1246–1248.CrossRefGoogle Scholar
  10. 10.
    Evan, S. V., Gatehouse, A. M. R., & Fellows, L. E. (1985). Entomologia Experimentalis et Applicata, 37, 257–261.CrossRefGoogle Scholar
  11. 11.
    Lee, D. (2000). Journal of Bioscience and Bioengineering, 89, 271–273.CrossRefGoogle Scholar
  12. 12.
    Lee, D., & Lee, S. (2001). FEBS Letter, 501, 84–86.CrossRefGoogle Scholar
  13. 13.
    Jong-Anurakkun, N., Bhandari, M. R., & Kawabata, J. (2007). Food Chemistry, 103, 1319–1323.CrossRefGoogle Scholar
  14. 14.
    Yogisha, S., & Raveesha, K. A. (2009). Pharmacologyonline, 1, 404–409.Google Scholar
  15. 15.
    Sancheti, S., Sancheti, S., & Seo, S. U. (2009). American Journal of Pharmacology and Toxicology, 4, 8–11.CrossRefGoogle Scholar
  16. 16.
    Tunsaringkarn, T., Rungsiyothin, A., & Rungrungsi, N. (2009). The Public Health Journal of Burapha University, 4, 54–63.Google Scholar
  17. 17.
    Van de Laar, F., Lucassen, P., Akkermans, R., Van de Lisdonk, E., Rutten, G., & Van Weel. (2005). Diabetes Care, 28, 166–175.Google Scholar
  18. 18.
    Tsujimoto, T., Shioyama, E., Moriya, K., Kawaratani, H., Shirai, Y., Toyohara, M., et al. (2008). World Journal of Gastroenterology, 14, 6087–6092.CrossRefGoogle Scholar
  19. 19.
    Ravindran, P., & Babu, K. (2005). In ginger: The genus Zingiber. USA: CRC Press.Google Scholar
  20. 20.
    Akiyama, K., Kikuzaki, H., Aoki, T., Okuda, A., Lajis, N., & Nakatani, N. (2006). Journal of Natural Products, 69, 1637–1640.CrossRefGoogle Scholar
  21. 21.
    Boukouvalas, J., & Wang, J. (2008). Organic Letters, 10, 3397–3399.CrossRefGoogle Scholar
  22. 22.
    Tiptara, P., Petsom, A., Roengsumran, S., & Sangvanich, P. (2008). Journal of the Science of Food and Agriculture, 88, 1025–1034.CrossRefGoogle Scholar
  23. 23.
    Samarkina, O., Popova, A., Gvozdik, E., Chkalina, V., Zvyagin, I., Rylova, Y., et al. (2009). Protein Expression and Purification, 65, 108–113.CrossRefGoogle Scholar
  24. 24.
    Tipthara, P., Sangvanich, P., Macth, M., & Petsom, A. (2007). Journal of Plant Biology, 50, 167–173.CrossRefGoogle Scholar
  25. 25.
    Bollag, D. M., Rozycki, M. D., & Edelstein, S. J. (1996). In protein methods (2nd ed.). Wiley-Liss, Inc: New York.Google Scholar
  26. 26.
    Lamelli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  27. 27.
    Mortz, E., Vorm, O., Mann, M., & Roepstorff, P. (1994). Biological Mass Spectrometry, 23, 249–261.CrossRefGoogle Scholar
  28. 28.
    Wang, H., & Ng, T. (2003). Protein Expression and Purification, 28, 9–14.CrossRefGoogle Scholar
  29. 29.
    Lee, H. (2005). Journal of Agricultural and Food Chemistry, 53, 2446–2450.CrossRefGoogle Scholar
  30. 30.
    Boonmee, A., Reynolds, C., & Sangvanich, P. (2007). Planta Medica, 73, 1197–1201.CrossRefGoogle Scholar
  31. 31.
    Ahmed, K. S. O. H., Milosavić, N. B., Popović, M. M., Prodanović, R. M., Knežević, Z. D., & Jankov, R. M. (2007). Journal of the Serbian Chemical Society, 72, 1255–1263.CrossRefGoogle Scholar
  32. 32.
    Agrawal, P. B., & Pandit, A. B. (2003). Biochemical Engineering Journal, 15, 37–45.CrossRefGoogle Scholar
  33. 33.
    Shevchenko, A., Sunyaev, S., Loboda, A., Shevchenko, A., Bork, P., Ens, W., et al. (2001). Analytical Chemistry, 73, 1917–1926.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nathachai Tiengburanatam
    • 1
  • Apaporn Boonmee
    • 2
  • Polkit Sangvanich
    • 2
    • 3
  • Aphichart Karnchanatat
    • 3
    Email author
  1. 1.Program in Biotechnology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Research Center for Bioorganic Chemistry, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.The Institute of Biotechnology and Genetic EngineeringChulalongkorn UniversityBangkokThailand

Personalised recommendations