Abstract
The objective of this study was to evaluate the potential of low/negative value soy whey (SW) as an alternative, inexpensive fermentation substrate to culture Lactococcus lactis subsp. lactis for nisin production. Initially, a microtiter plate assay using a Bioscreen C Microbiology Plate Reader was used for rapid optimization of culture conditions. Various treatments were examined in efforts to optimize nisin production from SW, including different methods for SW sterilization, ultrasonication of soy flake slurries for possible nutrient release, comparison of diluted and undiluted SW, and supplementation of SW with nutrients. In subsequent flask-based experiments, dry bacterial mass and nisin yields obtained from SW were 2.18 g/L and 619 mg/L, respectively, as compared to 2.17 g/L and 672 mg/L from a complex medium, de Man–Rogosa–Sharpe broth. Ultrasonication of soybean flake slurries (10% solid content) in water prior to production of SW resulted in ∼2% increase in biomass yields and ∼1% decrease in nisin yields. Nutrient supplementation to SW resulted in ∼3% and ∼7% increase in cell and nisin yields, respectively. This proof-of-concept study demonstrates the potential for use of a low/negative value liquid waste stream from soybean processing for production of a high-value fermentation end product.
This is a preview of subscription content, access via your institution.






References
Guerra, N. P., & Pastrana, L. (2003). Letters in Applied Microbiology, 37(1), 51–55.
Parente, E., & Ricciardi, A. (1999). Applied Microbiology Biotechnology, 52, 628–638.
Pongtharangkul, T., & Demirci, A. (2005). Biotechnological Progress, 22(1), 217–224.
Cleveland, J., Chikindas, M., & Montville, T. J. (2002). Industrial Microbiology & Biotechnology, 29, 228–232.
Vuyst, L., & Vandamme, E. J. (1993). Applied Microbiology Biotechnology, 40(1), 17–22.
Arauz, L. J. D., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Trends in Food Science& Technology, 20(3–4), 146–154.
Jozala, A. F., Andrade, M. S., Arauz, L. J., Pessoa, A., Jr., & Penna, T. C. V. (2007). Applied Biochemistry Biotechnology, 136–140, 515–528.
Liu, C., Liu, Y., & Chen, S. (2005). Applied Biochemistry Biotechnology, 121–124, 475–484.
Furuta, Y., Maruoka, N., Nakamura, A., Omori, T., & Sonomoto, K. (2008). Bioscience Bioengineering, 106(4), 393–397.
Vásquez, J. A., González, M. P., & Murado, M. A. (2006). Bioresource Technology, 97, 605–613.
Guerra, N. P., Agrasar, A. T., Macías, C. L., Bernárdez, P. F., & Castro, L. P. (2007). Food Engineering, 82, 103–113.
Davidson, P. M., & Branen, A. L. (2005). Food antimicrobials – An introduction (3rd ed., p. 2). New York: CRC.
Smith, A. K., Nash, A. M., Eldridge, A. C., & Wolf, W. J. (1962). Agricultural & Food Chemistry, 10(4), 302–304.
Falanghe, H., Smith, A. K., & Rackis, J. J. (1964). Applied Microbiology, 12(4), 330–334.
Wolf, C. E., & Gibbons, W. R. (1996). Applied Bacteriology, 80(4), 453–457.
Rackis, J. J., Honig, D. H., Sessa, D. J., & Cavins, J. F. (1971). Food Science, 36(1), 10–13.
Snyder, H. E., & Kwon, T. W. (1987). Soybean utilization (p. 59). New York: Van Nostrand Reinhold.
Smith, A. K., Schubert, E. N., & Belter, P. A. (1954). American Oil Chemical Society, 32, 274–278.
Deak, N. A., & Johnson, L. A. (2007). American Oil Chemical Society, 84, 259–268.
Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of sea water analysis. Bulletin–Fisheries Research Board of Canada.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. S. (1951). Biological Chemistry, 193, 265–275.
Tramer, J., & Fowler, G. G. (1964). Science of Food &Agriculture, 15, 522–528.
Mocquot, G., & Lefebvre, E. (1956). Applied Bacteriology, 19, 322–323.
Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, H., Grewell, D., Pometto, A. L., et al. (2009). Food Engineering, 96(2), 270–278.
Karki, B., Lamsal, B. P., Grewell, D., Pometto, A. L., Van Leeuwen, J., Khanal, S. K., et al. (2009). American Chemical Society, 86(10), 1021–1028.
Barry, A. L., Garcia, F., & Thrupp, L. D. (1970). American Journal of Clinical Pathology, 53(2), 149–158.
Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford: Oxford University Press.
Daniel, K. T. (2005). The whole soy story, the dark side of America’s favorite health food, CCN (pp. 38–39). Washington DC: New Trends.
Rackis, J. J. (1974). American Oil Chemical Society, 51, 161A–170A.
Liu, C., Liu, Y., Liao, W., Wen, Z., & Chen, S. (2004). Applied Biochemistry Biotechnology, 114(1–3), 627–638.
Matsusaki, H., Endo, N., Sonomoto, K., & Ishizaki, A. (1996). Applied Microbiology Biotechnology, 45, 36–40.
De Vuyst, L., De Poorter, G., & Vandamme, E. J. (1989). In P. L. Yu (Ed.), Fermentation technologies: industrial applications (pp. 166–172). London: Elsevier.
Hurst, A. (1966). General Microbiology, 44, 209–220.
Guerra, N. P., Rua, M. L., & Pastrana, L. (2001). International Journal of Food Microbiology, 70, 267–281.
Guerra, N. P., & Pastrana, L. (2002). Biotechnology Applied Biochemistry, 36, 119–125.
Guerra, N. P., & Pastrana, L. (2002). Process Biochemistry, 37, 1005–1015.
Yang, R., & Ray, B. (1994). Food Microbiology, 11, 281–291.
Guerra, N. P., & Pastrana, L. (2001). Biotechnology Letters, 23, 609–612.
Brooks, J. R., & Morr, C. V. (1984). Agricultural Food Chemistry, 32(3), 672–674.
LeBlanc, J. G., Silvestroni, A., Connes, C., Juillard, V., de Giori, G. S., Piard, J. C., et al. (2004). Reduction of non-digestible oligosaccharides in soymilk: Application of engineered lactic acid bacteria that produce a-galactosidase. Genetics Molecular Research, 3(3), 432–440.
Zarrabal, O. C., Hipolito, C. N., Bujang, K. P., & Ishizaki, A. (2009). Industrial Microbiology Biotechnology, 36, 409–415.
Acknowledgement
The authors wish to thank the Iowa Biotechnology Byproducts Consortium and Iowa State University, Institute for Food Safety and Security (IFSS) for financial support. We also extend our thanks to the CCUR at Iowa State University, Adam Pintar for help with statistical analysis, Stephanie Jung, Devin Maurer, Steve Fox, Ilankovan Paraman, Supriyo Das and Carol Ziel for experimental and analytical assistance. The defatted soy flakes were kindly provided by Cargill through CCUR.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mitra, D., Pometto, A.L., Khanal, S.K. et al. Value-Added Production of Nisin from Soy Whey. Appl Biochem Biotechnol 162, 1819–1833 (2010). https://doi.org/10.1007/s12010-010-8951-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-010-8951-y
Keywords
- Soy whey
- Nisin
- Value-added production
- Lactococcus lactis
- Bioscreen
- Fermentation