Skip to main content
Log in

Empirical Evaluation of Inhibitory Product, Substrate, and Enzyme Effects During the Enzymatic Saccharification of Lignocellulosic Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  2. Aden, A. (2007). Biochemical production of ethanol from corn stover: 2007 state of technology model. NREL Technical Paper NREL/TP-510-43205. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  3. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). Lignocellulosic biomasss to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL Technical Paper NREL/TP-510-32438. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  4. Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Biotechnology Progress, 20, 698–705.

    Article  CAS  Google Scholar 

  5. Zhang, Y. H. P., & Lynd, L. R. (2006). Biotechnology and Bioengineering, 94, 888–898.

    Article  CAS  Google Scholar 

  6. Gan, Q., Allen, S. J., & Taylor, G. (2003). Process Biochemistry, 38, 1003–1018.

    Article  CAS  Google Scholar 

  7. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  8. Ma, A. Z., Hu, Q., Qu, Y. B., Bai, Z. H., Liu, W. F., & Zhuang, G. Q. (2008). Enzyme and Microbial Technology, 42, 543–547.

    Article  CAS  Google Scholar 

  9. Demerdash, M., & Attia, R. M. (1992). Zentralblatt Fur Mikrobiologie, 147, 477–482.

    CAS  Google Scholar 

  10. Klyosov, A. A. (1990). Biochemistry, 29, 10577–10585.

    Article  CAS  Google Scholar 

  11. Nidetzky, B., Steiner, W., & Claeyssens, M. (1995). In Enzymatic degradation of insoluble carbohydrates (pp. 90–112). Washington, DC: ACS.

  12. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 739–739.

    Article  Google Scholar 

  13. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). In L. Olsson (Ed.) Biofuels (pp. 67–93). Berlin: Springer-Verlag.

  14. Galbe, M., & Zacchi, G. (2007). In L. Olsson (Ed.) Biofuels (pp. 41–65). Berlin: Springer-Verlag.

  15. Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., & Johnson, D. K. (2007). Biotechnology and Bioengineering, 98, 112–122.

    Article  CAS  Google Scholar 

  16. Desai, S. G., & Converse, A. O. (1997). Biotechnology and Bioengineering, 56, 650–655.

    Article  CAS  Google Scholar 

  17. Yang, B., Willies, D. M., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 1122–1128.

    Article  CAS  Google Scholar 

  18. Valjamae, P., Kipper, K., Pettersson, G., & Johansson, G. (2003). Biotechnology and Bioengineering, 84, 254–257.

    Article  Google Scholar 

  19. Hong, J., Ye, X. H., & Zhang, Y. H. P. (2007). Langmuir, 23, 12535–12540.

    Article  CAS  Google Scholar 

  20. Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98, 641–654.

    Article  Google Scholar 

  21. Kristensen, J. B., Borjesson, J., Bruun, M. H., Tjerneld, F., & Jorgensen, H. (2007). Enzyme and Microbial Technology, 40, 888–895.

    Article  CAS  Google Scholar 

  22. Xu, F., Ding, H. S., Osborn, D., Tejirian, A., Brown, K., Albano, W., et al. (2008). Journal of Molecular Catalysis B Enzymatic, 51, 42–48.

    Article  CAS  Google Scholar 

  23. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  24. Borjesson, J., Peterson, R., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 40, 754–762.

    Article  Google Scholar 

  25. Xiao, Z. Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113–116, 1115–1126.

    Article  Google Scholar 

  26. Henley, R. G., Yang, R. Y. K., & Greenfield, P. F. (1980). Enzyme and Microbial Technology, 2, 206–208.

    Article  CAS  Google Scholar 

  27. Drissen, R. E. T., Maas, R. H. W., Van Der Maarel, M., Kabel, M. A., Schols, H. A., Tramper, J., et al. (2007). Biocatalysis and Biotransformation, 25, 419–429.

    Article  CAS  Google Scholar 

  28. Alfani, F., Albanesi, D., Cantarella, M., Scardi, V., & Vetromile, A. (1982). Biomass, 2, 245–253.

    Article  CAS  Google Scholar 

  29. Kumar, R., & Wyman, C. E. (2008). Enzyme and Microbial Technology, 42, 426–433.

    Article  CAS  Google Scholar 

  30. Belafi-Bako, K., Koutinas, A., Nemestothy, N., Gubicza, L., & Webb, C. (2006). Enzyme and Microbial Technology, 38, 155–161.

    Article  CAS  Google Scholar 

  31. Gan, Q., Allen, S. J., & Taylor, G. (2002). Biochemical Engineering Journal, 12, 223–229.

    Article  CAS  Google Scholar 

  32. Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Applied Biochemistry and Biotechnology, 105–108, 69–85.

  33. Weiss, N. D., Farmer, J. D., & Schell, D. J. (2010). Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresource Technology, 101, 674–678.

    Google Scholar 

  34. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  35. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  36. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

  37. Merck (2001). Glucose. In M. J. O'Neil, A. Smith, P. E. Heckelman, & S. Budavari (Eds.) The Merck index (13th ed.). New York: John Wiley & Sons

  38. Mores, W. D., Knutsen, J. S., & Davis, R. H. (2001). Applied Biochemistry and Biotechnology, 91–93, 297–309.

    Article  Google Scholar 

  39. Meunier-Goddik, L., & Penner, M. H. (1999). Journal of Agricultural and Food Chemistry, 47, 346–351.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a seed grant from Colorado Center for Biorefining and Biofuels. Ben Smith was also supported by a graduate fellowship from the U.S. Department of Education’s Graduate Assistantships in Areas of National Need (GAANN) program. Chelsea Daniels assisted with several of the experiments with support from the University of Colorado’s Discovery Learning Apprentice program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.T., Knutsen, J.S. & Davis, R.H. Empirical Evaluation of Inhibitory Product, Substrate, and Enzyme Effects During the Enzymatic Saccharification of Lignocellulosic Biomass. Appl Biochem Biotechnol 161, 468–482 (2010). https://doi.org/10.1007/s12010-010-8931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8931-2

Keywords

Navigation