Potential of Xanthones from Tropical Fruit Mangosteen as Anti-cancer Agents: Caspase-Dependent Apoptosis Induction In Vitro and in Mice

Abstract

The pericarp of mangosteen (Garcinia mangostana L.) is rich in various xanthones that are known to possess unique biological activities. In this work, we characterized the anti-proliferative and cytotoxic activities of mangosteen xanthones both in vitro and in mice. In vitro analysis with a human colorectal adenocarcinoma cell line, COLO 205, showed that mangosteen xanthones not only inhibit the proliferation of target cells but also induce their death by apoptosis that involves the activation of the caspase cascade. In vivo analysis using a mouse subcutaneous tumor model with COLO 205 cells showed that, at relatively low doses, the growth of tumors was repressed upon intratumoral administration of mangosteen xanthones. When a higher dose of mangosteen xanthones was administered, the size of tumors was reduced gradually, and, in some mice, the disappearance of tumors was seen. Histopathological evaluation and biochemical analysis of tumors that received mangosteen xanthones indicate the induction of apoptosis in tumors, which resulted in the repression of their growth and the reduction of their sizes. These results demonstrate the potential of mangosteen xanthones to serve as anti-cancer agents for the chemotherapy of cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Mahabusarakam, W., Iriyachitra, P., & Taylor, W. C. (1987). Journal of Natural Products, 50, 474–478.

    Article  CAS  Google Scholar 

  2. 2.

    Peres, V., & Nagem, T. J. (1997). Phytochemistry, 44, 191–214.

    Article  CAS  Google Scholar 

  3. 3.

    Peres, V., Nagem, T. J., & de Oliveira, F. F. (2000). Phytochemistry, 55, 683–710.

    Article  CAS  Google Scholar 

  4. 4.

    Suksamrarn, S., Suwannapoch, N., Phakhodee, W., Thanuhiranlert, J., Ratananukul, P., Chimnoi, N., et al. (2003). Chemical and Pharmaceutical Bulletin (Tokyo), 51, 857–859.

    Article  CAS  Google Scholar 

  5. 5.

    Gopalakrishnan, G., Banumathi, B., & Suresh, G. (1997). Journal of Natural Products, 60, 519–524.

    Article  CAS  Google Scholar 

  6. 6.

    Jung, H. A., Su, B. N., Keller, W. J., Mehta, R. G., & Kinghorn, A. D. (2006). Journal of Agricultural and Food Chemistry, 54, 2077–2082.

    Article  CAS  Google Scholar 

  7. 7.

    Mahabusarakam, W., Proudfoot, J., Taylor, W., & Croft, K. (2000). Free Radical Research, 33, 643–659.

    Article  CAS  Google Scholar 

  8. 8.

    Williams, P., Ongsakul, M., Proudfoot, J., Croft, K., & Beilin, L. (1995). Free Radical Research, 23, 175–184.

    Article  CAS  Google Scholar 

  9. 9.

    Yoshikawa, M., Hardy, E., Miki, A., Tsukamoto, K., Liang, S., Yamahara, J., et al. (1994). Journal of the Pharmacy Society of Japan, 114, 129–133.

    CAS  Google Scholar 

  10. 10.

    Chen, L. G., Yang, L. L., & Wang, C. C. (2008). Food and Chemical Toxicology, 46, 688–693.

    Article  CAS  Google Scholar 

  11. 11.

    Nakatani, K., Nakahata, N., Arakawa, T., Yasuda, H., & Ohizumi, Y. (2002). Biochemical Pharmacology, 63, 73–79.

    Article  CAS  Google Scholar 

  12. 12.

    Ho, C. K., Huang, Y. L., & Chen, C. C. (2002). Planta Medica, 68, 975–979.

    Article  CAS  Google Scholar 

  13. 13.

    Matsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M., et al. (2005). Bioorganic & Medicinal Chemistry, 13, 6064–6069.

    Article  CAS  Google Scholar 

  14. 14.

    Moongkarndi, P., Kosem, N., Luanratana, O., Jongsomboonkusol, S., & Pongpan, N. (2004). Fitoterapia, 75, 375–377.

    Article  Google Scholar 

  15. 15.

    Nakagawa, Y., Iinuma, M., Naoe, T., Nozawa, Y., & Akao, Y. (2007). Bioorganic & Medicinal Chemistry, 15, 5620–5628.

    Article  CAS  Google Scholar 

  16. 16.

    Sato, A., Fujiwara, H., Oku, H., Ishiguro, K., & Ohizumi, Y. (2004). Journal of Pharmacological Science, 95, 33–40.

    Article  CAS  Google Scholar 

  17. 17.

    Suksamrarn, S., Komutiban, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N., & Suksamrarn, A. (2006). Chemical and Pharmaceutical Bulletin (Tokyo), 54, 301–305.

    Article  CAS  Google Scholar 

  18. 18.

    Ee, G. C., Daud, S., Izzaddin, S. A., & Rahmani, M. (2008). Journal of Asian Natural Products Research, 10, 475–479.

    Article  Google Scholar 

  19. 19.

    Nabandith, V., Suzui, M., Morioka, T., Kaneshiro, T., Kinjo, T., Matsumoto, K., et al. (2004). Asian Pacific Journal of Cancer Prevention, 5, 433–448.

    Google Scholar 

  20. 20.

    Mosmann, T. (1983). Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  21. 21.

    Uthaisang, W., Reutrakul, V., Krachangchaeng, C., Wilairat, P., & Fadeel, B. (2004). Cancer Letters, 208, 171–178.

    Article  CAS  Google Scholar 

  22. 22.

    Arnoult, D., Parone, P., Martinou, J. C., Antonsson, B., Estaquier, J., & Ameisen, J. C. (2002). Journal of Cell Biology, 159, 923–929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Research Council of Thailand, Faculty of Medicine and Center for the Development of Value-added Natural Products Srinakharinwirot University. R.W. was supported by the Fulbright Visiting Scholar Program 2006–2007, the Thailand–United States Education Foundation (Fulbright).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramida Watanapokasin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watanapokasin, R., Jarinthanan, F., Jerusalmi, A. et al. Potential of Xanthones from Tropical Fruit Mangosteen as Anti-cancer Agents: Caspase-Dependent Apoptosis Induction In Vitro and in Mice. Appl Biochem Biotechnol 162, 1080–1094 (2010). https://doi.org/10.1007/s12010-009-8903-6

Download citation

Keywords

  • Garcinia mangostana L (mangosteen)
  • Apoptosis
  • Caspase
  • Mangostin
  • Cancer chemotherapy