Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potential of Xanthones from Tropical Fruit Mangosteen as Anti-cancer Agents: Caspase-Dependent Apoptosis Induction In Vitro and in Mice

Abstract

The pericarp of mangosteen (Garcinia mangostana L.) is rich in various xanthones that are known to possess unique biological activities. In this work, we characterized the anti-proliferative and cytotoxic activities of mangosteen xanthones both in vitro and in mice. In vitro analysis with a human colorectal adenocarcinoma cell line, COLO 205, showed that mangosteen xanthones not only inhibit the proliferation of target cells but also induce their death by apoptosis that involves the activation of the caspase cascade. In vivo analysis using a mouse subcutaneous tumor model with COLO 205 cells showed that, at relatively low doses, the growth of tumors was repressed upon intratumoral administration of mangosteen xanthones. When a higher dose of mangosteen xanthones was administered, the size of tumors was reduced gradually, and, in some mice, the disappearance of tumors was seen. Histopathological evaluation and biochemical analysis of tumors that received mangosteen xanthones indicate the induction of apoptosis in tumors, which resulted in the repression of their growth and the reduction of their sizes. These results demonstrate the potential of mangosteen xanthones to serve as anti-cancer agents for the chemotherapy of cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Mahabusarakam, W., Iriyachitra, P., & Taylor, W. C. (1987). Journal of Natural Products, 50, 474–478.

  2. 2.

    Peres, V., & Nagem, T. J. (1997). Phytochemistry, 44, 191–214.

  3. 3.

    Peres, V., Nagem, T. J., & de Oliveira, F. F. (2000). Phytochemistry, 55, 683–710.

  4. 4.

    Suksamrarn, S., Suwannapoch, N., Phakhodee, W., Thanuhiranlert, J., Ratananukul, P., Chimnoi, N., et al. (2003). Chemical and Pharmaceutical Bulletin (Tokyo), 51, 857–859.

  5. 5.

    Gopalakrishnan, G., Banumathi, B., & Suresh, G. (1997). Journal of Natural Products, 60, 519–524.

  6. 6.

    Jung, H. A., Su, B. N., Keller, W. J., Mehta, R. G., & Kinghorn, A. D. (2006). Journal of Agricultural and Food Chemistry, 54, 2077–2082.

  7. 7.

    Mahabusarakam, W., Proudfoot, J., Taylor, W., & Croft, K. (2000). Free Radical Research, 33, 643–659.

  8. 8.

    Williams, P., Ongsakul, M., Proudfoot, J., Croft, K., & Beilin, L. (1995). Free Radical Research, 23, 175–184.

  9. 9.

    Yoshikawa, M., Hardy, E., Miki, A., Tsukamoto, K., Liang, S., Yamahara, J., et al. (1994). Journal of the Pharmacy Society of Japan, 114, 129–133.

  10. 10.

    Chen, L. G., Yang, L. L., & Wang, C. C. (2008). Food and Chemical Toxicology, 46, 688–693.

  11. 11.

    Nakatani, K., Nakahata, N., Arakawa, T., Yasuda, H., & Ohizumi, Y. (2002). Biochemical Pharmacology, 63, 73–79.

  12. 12.

    Ho, C. K., Huang, Y. L., & Chen, C. C. (2002). Planta Medica, 68, 975–979.

  13. 13.

    Matsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M., et al. (2005). Bioorganic & Medicinal Chemistry, 13, 6064–6069.

  14. 14.

    Moongkarndi, P., Kosem, N., Luanratana, O., Jongsomboonkusol, S., & Pongpan, N. (2004). Fitoterapia, 75, 375–377.

  15. 15.

    Nakagawa, Y., Iinuma, M., Naoe, T., Nozawa, Y., & Akao, Y. (2007). Bioorganic & Medicinal Chemistry, 15, 5620–5628.

  16. 16.

    Sato, A., Fujiwara, H., Oku, H., Ishiguro, K., & Ohizumi, Y. (2004). Journal of Pharmacological Science, 95, 33–40.

  17. 17.

    Suksamrarn, S., Komutiban, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N., & Suksamrarn, A. (2006). Chemical and Pharmaceutical Bulletin (Tokyo), 54, 301–305.

  18. 18.

    Ee, G. C., Daud, S., Izzaddin, S. A., & Rahmani, M. (2008). Journal of Asian Natural Products Research, 10, 475–479.

  19. 19.

    Nabandith, V., Suzui, M., Morioka, T., Kaneshiro, T., Kinjo, T., Matsumoto, K., et al. (2004). Asian Pacific Journal of Cancer Prevention, 5, 433–448.

  20. 20.

    Mosmann, T. (1983). Journal of Immunological Methods, 65, 55–63.

  21. 21.

    Uthaisang, W., Reutrakul, V., Krachangchaeng, C., Wilairat, P., & Fadeel, B. (2004). Cancer Letters, 208, 171–178.

  22. 22.

    Arnoult, D., Parone, P., Martinou, J. C., Antonsson, B., Estaquier, J., & Ameisen, J. C. (2002). Journal of Cell Biology, 159, 923–929.

Download references

Acknowledgments

This work was supported, in part, by the National Research Council of Thailand, Faculty of Medicine and Center for the Development of Value-added Natural Products Srinakharinwirot University. R.W. was supported by the Fulbright Visiting Scholar Program 2006–2007, the Thailand–United States Education Foundation (Fulbright).

Author information

Correspondence to Ramida Watanapokasin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watanapokasin, R., Jarinthanan, F., Jerusalmi, A. et al. Potential of Xanthones from Tropical Fruit Mangosteen as Anti-cancer Agents: Caspase-Dependent Apoptosis Induction In Vitro and in Mice. Appl Biochem Biotechnol 162, 1080–1094 (2010). https://doi.org/10.1007/s12010-009-8903-6

Download citation

Keywords

  • Garcinia mangostana L (mangosteen)
  • Apoptosis
  • Caspase
  • Mangostin
  • Cancer chemotherapy