Skip to main content
Log in

Effect of Concentration and Substrate Flow Rate on Isomaltulose Production from Sucrose by Erwinia sp. Cells Immobilized in Calcium-Alginate Using Packed Bed Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Isomaltulose was obtained from sucrose solution by immobilized cells of Erwinia sp. D12 using a batch and a continuous process. Parameters for sucrose conversion into isomaltulose were evaluated using both experimental design and response surface methodology. Erwinia sp. D12 cells were immobilized in different alginates, and the influence of substrate flow rate and concentration parameters to produce isomaltulose from sucrose were observed. Response surface methodology demonstrated that packed bed columns containing cells immobilized in low-viscosity sodium alginate (250 cP) presented a mean isomaltulose conversion rate of 47%. In a continuous process, both sucrose substrate concentration and substrate flow rate parameters had a significant effect (p < 0.05) and influenced the conversion of sucrose into isomaltulose. Higher conversion rates of sucrose into isomaltulose, from 53–75% were obtained using 75 g of immobilized cells at a substrate flow rate of 0.6 mL/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krastanov, A., & Yoshida, A. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 593–598.

    Article  CAS  Google Scholar 

  2. Huang, J. H., Hsu, L. H., & Su, Y. C. (1998). Journal of Industrial Microbiology and Biotechnology, 21, 22–27.

    Article  CAS  Google Scholar 

  3. Hashimoto, H., Yamada, K., & Yoshimura, J. (1987). Biotechnological Letters, 9, 849–854.

    Article  CAS  Google Scholar 

  4. Takazoe, I. (1989). Palatinose—an isomeric alternative to sucrose. In T. H. Grenby (Ed.), Progress in Sweeteners (pp. 143–168). London: Elsevier Applied Science.

    Google Scholar 

  5. Ooshima, T., Izumitani, A., Minami, T., Fujiwara, T., Nakajima, Y., & Hamada, S. (1991). Caries Research, 25, 277–282.

    Article  CAS  Google Scholar 

  6. Salvucci, M. E. (2003). Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies, Bemisia argentifolii, and Erwinia rhapontici. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry and Molecular Biology, 135, 385–395.

    Article  CAS  Google Scholar 

  7. Arai, H., Mizuno, A., Sakuma, M., Fukaya, M., Matsuo, K., Muto, K., et al. (2007). Metabolism, Clinical and Experimental, 56, 115–121.

    CAS  Google Scholar 

  8. Ravaud, S., Watzlawick, H., Mattes, R., Haser, R., & Aghajari, N. (2005). Biologia, 60(16), 89–95.

    CAS  Google Scholar 

  9. Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Food and Chemical Toxicology, 40(10), 1375–1381.

    Article  CAS  Google Scholar 

  10. Lichtenthaler, F. W., & Peters, S. (2004). C. R. Chimica, 7, 65–90.

    CAS  Google Scholar 

  11. Lichtenthaler, F. W. (2006). The key sugars of biomass: availability, present non-food applications and potential industrial development lines. In B. Kamm, P. R. Gruber, & M. Kamm (Eds.), Biorefineries, industrial processes and products, status quo and future directions (pp. 3–59). Weinheim: Wiley-VHC.

    Google Scholar 

  12. Cheetham, P. S. J. (1984). Biochemical Journal, 220, 213–220.

    CAS  Google Scholar 

  13. Véronèse, T., & Perlot, P. (1999). Enzyme and Microbial Technology, 24, 263–269.

    Article  Google Scholar 

  14. Wu, L., & Birch, R. G. (2004). Journal of Applied Microbiology, 97, 93–103.

    Article  CAS  Google Scholar 

  15. Duflot, P and Fouache, C., (2001). Method for producing palatinitol. US Patent, 6.204.378.

  16. Maki, Y., Ohta, K., Takazoe, Y., Matsukubo, Y., Takaesu, Y., Topitsoglou, V., et al. (1983). Caries Research, 17, 335–339.

    Article  CAS  Google Scholar 

  17. Tsuyuki, K., Sugitani, Y., Miyata, Y., Ebashi, T., & Nakajima, Y. (1992). Journal of General and Applied Microbiology, 38, 483–490.

    Article  CAS  Google Scholar 

  18. Kawaguti, H. Y., Buzzato, M. F., & Sato, H. H. (2006). Journal of Industrial Microbiology and Biotechnology, 34, 261–269.

    Article  CAS  Google Scholar 

  19. Walsh, P. K., & Malone, D. M. (1995). Biotechnology Advances, 13, 13–43.

    Article  CAS  Google Scholar 

  20. Park, J. K., & Chang, H. N. (2000). Biotechnology Advances, 18, 303–319.

    Article  CAS  Google Scholar 

  21. Vorlop, K. D., & Klein, J. (1983). New developments in the field of cell immobilization—formation of biocatalysts by ionotropic gelation. In R. M. Lafferty (Ed.), Enzyme Technology (pp. 219–235). Berlin: Springer-Verlag.

    Google Scholar 

  22. Ogbonna, J. C., Amano, Y., & Nakamura, K. (1989). Journal of Fermentation and Bioengineering, 67, 92–96.

    Article  CAS  Google Scholar 

  23. Hulst, A. C., & Tramper, J. (1989). Enzyme and Microbial Technology, 11, 546–558.

    Article  Google Scholar 

  24. Mundra, P., Desai, K., & Lele, S. S. (2007). Bioresource Technology, 98, 2892–2896.

    Article  CAS  Google Scholar 

  25. Moraes, A. L. L., Steckelberg, C., Sato, H. H., & Pinheiro, A. (2005). Ciência e Tecnologia de Alimentos, 25, 95–102.

    Article  CAS  Google Scholar 

  26. Krastanov, A., Blazheva, D., Yanakieva, I., & Kratchanova, M. (2006). Enzyme and Microbial Technology, 39, 1306–1312.

    Article  CAS  Google Scholar 

  27. Krastanov, A., Blazheva, D., & Stanchev, V. (2007). Process Biochemistry, 42, 1655–1659.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank FAPESP for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroldo Yukio Kawaguti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguti, H.Y., Harumi Sato, H. Effect of Concentration and Substrate Flow Rate on Isomaltulose Production from Sucrose by Erwinia sp. Cells Immobilized in Calcium-Alginate Using Packed Bed Reactor. Appl Biochem Biotechnol 162, 89–102 (2010). https://doi.org/10.1007/s12010-009-8899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8899-y

Keywords

Navigation