Skip to main content
Log in

Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of l-arabinose, 4-O-methyl-d-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 °C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5–3.5% (w/v), enzyme load 40–80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vazquez, M. J., Alonso, J. L., Dominguez, H., & Parajo, J. C. (2000). Trends in Food Science & Technology, 11, 387–393.

    Article  CAS  Google Scholar 

  2. Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R., & Elander, R. T. (2006). Applied Biochemistry and Biotechnology, 129–132, 586–598.

    Article  Google Scholar 

  3. Biely, P., Vršanská, M., Tenkanen, M., & Kluepfel, D. (1997). Journal of Biotechnology, 57, 151–166.

    Article  CAS  Google Scholar 

  4. Alam, M., Gomes, I., Mohiuddin, G., & Hoq, M. M. (1994). Enzyme and Microbial Technology, 16, 298–302.

    Article  CAS  Google Scholar 

  5. Gomes, I., Gomes, J., Gomes, D. J., & Steiner, W. (2000). Applied Microbiology and Biotechnology, 53, 461–468.

    Article  CAS  Google Scholar 

  6. Yu, E. K. C., Tan, L. U. L., Chan, M. K. H., Deschatelets, L., & Saddler, J. N. (1987). Enzyme and Microbial Technology, 9, 16–24.

    Article  CAS  Google Scholar 

  7. Vardakou, M., Katapodis, P., Samiotaki, M., Kekos, D., Panayotou, G., & Christakopoulos, P. (2003). International Journal of Biological Macromolecules, 33, 129–134.

    Article  CAS  Google Scholar 

  8. Kalogeris, E., Christakopoulos, P., Vrsanska, M., Kekos, D., Biely, P., & Macris, B. J. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 491–501.

    Article  CAS  Google Scholar 

  9. Kolenova, K., Vrsanska, M., & Biely, P. (2006). Journal of Biotechnology, 121, 338–345.

    Article  CAS  Google Scholar 

  10. Brienzo, M., Siqueira, A. F., & Milagres, A. M. F. (2009). Biochemical Engineering Journal, 46, 199–204.

    Article  CAS  Google Scholar 

  11. Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., et al. (2003). Process Biochemistry, 38, 1099–1104.

    Article  CAS  Google Scholar 

  12. Milagres, A. M. F., Santos, E., Piovan, T., & Roberto, I. C. (2004). Process Biochemistry, 39, 1387–1391.

    Article  CAS  Google Scholar 

  13. Santos, E., Piovan, T., Roberto, I. C., & Milagres, A. M. F. (2003). Biotechnological Letters, 25, 13–16.

    Article  Google Scholar 

  14. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  15. Biely, P., Mastihubová, M., van Zyl, W. H., & Prior, B. A. (2002). Analytical Biochemistry, 311, 68–75.

    Article  CAS  Google Scholar 

  16. Li, J., Kisara, K., Danielsson, S., Lindstrom, M. E., & Gellerstedt, G. (2007). Carbohydrate Research, 342, 1442–1449.

    Article  CAS  Google Scholar 

  17. Khandke, K. M., Vithayathil, P. J., & Murthy, S. K. (1989). Archives of Biochemistry and Biophysics, 274, 511–517.

    Article  CAS  Google Scholar 

  18. Roche, N., Desgranges, C., & Durand, A. (1994). Journal of Biotechnology, 38, 43–50.

    Article  CAS  Google Scholar 

  19. Yang, C.-H., Yang, S.-F., & Liu, W.-H. (2007). Journal of Agricultural and Food Chemistry, 55, 3955–3959.

    Article  CAS  Google Scholar 

  20. Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. J., & Hayashi, K. (2004). Journal of Molecular Catalysis B, Enzymatic, 27, 207–213.

    Article  CAS  Google Scholar 

  21. Jeong, K. J., Park, I. Y., Kim, M. S., & Kim, S. C. (1998). Applied Microbiology and Biotechnology, 50, 113–118.

    Article  CAS  Google Scholar 

  22. Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., Macris, B. J., Stamatis, H., et al. (2003). International Journal of Biological Macromolecules, 31, 171–175.

    Article  CAS  Google Scholar 

  23. Aachary, A. A., & Prapulla, S. G. (2009). Bioresource Technology, 100, 991–995.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Fapesp and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane M. F. Milagres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brienzo, M., Carvalho, W. & Milagres, A.M.F. Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus . Appl Biochem Biotechnol 162, 1195–1205 (2010). https://doi.org/10.1007/s12010-009-8892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8892-5

Keywords

Navigation