Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 4, pp 1195–1205 | Cite as

Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus

  • Michel Brienzo
  • Walter Carvalho
  • Adriane M. F. MilagresEmail author
Article

Abstract

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of l-arabinose, 4-O-methyl-d-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 °C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5–3.5% (w/v), enzyme load 40–80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.

Keywords

Xylooligosaccharides Thermoascus aurantiacus Lignocellulose degradation Biomass Optimization Enzyme 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of Fapesp and CNPq.

References

  1. 1.
    Vazquez, M. J., Alonso, J. L., Dominguez, H., & Parajo, J. C. (2000). Trends in Food Science & Technology, 11, 387–393.CrossRefGoogle Scholar
  2. 2.
    Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R., & Elander, R. T. (2006). Applied Biochemistry and Biotechnology, 129–132, 586–598.CrossRefGoogle Scholar
  3. 3.
    Biely, P., Vršanská, M., Tenkanen, M., & Kluepfel, D. (1997). Journal of Biotechnology, 57, 151–166.CrossRefGoogle Scholar
  4. 4.
    Alam, M., Gomes, I., Mohiuddin, G., & Hoq, M. M. (1994). Enzyme and Microbial Technology, 16, 298–302.CrossRefGoogle Scholar
  5. 5.
    Gomes, I., Gomes, J., Gomes, D. J., & Steiner, W. (2000). Applied Microbiology and Biotechnology, 53, 461–468.CrossRefGoogle Scholar
  6. 6.
    Yu, E. K. C., Tan, L. U. L., Chan, M. K. H., Deschatelets, L., & Saddler, J. N. (1987). Enzyme and Microbial Technology, 9, 16–24.CrossRefGoogle Scholar
  7. 7.
    Vardakou, M., Katapodis, P., Samiotaki, M., Kekos, D., Panayotou, G., & Christakopoulos, P. (2003). International Journal of Biological Macromolecules, 33, 129–134.CrossRefGoogle Scholar
  8. 8.
    Kalogeris, E., Christakopoulos, P., Vrsanska, M., Kekos, D., Biely, P., & Macris, B. J. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 491–501.CrossRefGoogle Scholar
  9. 9.
    Kolenova, K., Vrsanska, M., & Biely, P. (2006). Journal of Biotechnology, 121, 338–345.CrossRefGoogle Scholar
  10. 10.
    Brienzo, M., Siqueira, A. F., & Milagres, A. M. F. (2009). Biochemical Engineering Journal, 46, 199–204.CrossRefGoogle Scholar
  11. 11.
    Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., et al. (2003). Process Biochemistry, 38, 1099–1104.CrossRefGoogle Scholar
  12. 12.
    Milagres, A. M. F., Santos, E., Piovan, T., & Roberto, I. C. (2004). Process Biochemistry, 39, 1387–1391.CrossRefGoogle Scholar
  13. 13.
    Santos, E., Piovan, T., Roberto, I. C., & Milagres, A. M. F. (2003). Biotechnological Letters, 25, 13–16.CrossRefGoogle Scholar
  14. 14.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  15. 15.
    Biely, P., Mastihubová, M., van Zyl, W. H., & Prior, B. A. (2002). Analytical Biochemistry, 311, 68–75.CrossRefGoogle Scholar
  16. 16.
    Li, J., Kisara, K., Danielsson, S., Lindstrom, M. E., & Gellerstedt, G. (2007). Carbohydrate Research, 342, 1442–1449.CrossRefGoogle Scholar
  17. 17.
    Khandke, K. M., Vithayathil, P. J., & Murthy, S. K. (1989). Archives of Biochemistry and Biophysics, 274, 511–517.CrossRefGoogle Scholar
  18. 18.
    Roche, N., Desgranges, C., & Durand, A. (1994). Journal of Biotechnology, 38, 43–50.CrossRefGoogle Scholar
  19. 19.
    Yang, C.-H., Yang, S.-F., & Liu, W.-H. (2007). Journal of Agricultural and Food Chemistry, 55, 3955–3959.CrossRefGoogle Scholar
  20. 20.
    Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. J., & Hayashi, K. (2004). Journal of Molecular Catalysis B, Enzymatic, 27, 207–213.CrossRefGoogle Scholar
  21. 21.
    Jeong, K. J., Park, I. Y., Kim, M. S., & Kim, S. C. (1998). Applied Microbiology and Biotechnology, 50, 113–118.CrossRefGoogle Scholar
  22. 22.
    Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., Macris, B. J., Stamatis, H., et al. (2003). International Journal of Biological Macromolecules, 31, 171–175.CrossRefGoogle Scholar
  23. 23.
    Aachary, A. A., & Prapulla, S. G. (2009). Bioresource Technology, 100, 991–995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michel Brienzo
    • 1
  • Walter Carvalho
    • 1
  • Adriane M. F. Milagres
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Engineering of LorenaUniversity of São Paulo—USP Estrada Municipal do CampinhoLorenaBrazil

Personalised recommendations